Class: Numeric (Ruby 2.3.4)

    In Files

    • complex.c
    • numeric.c
    • rational.c

    Class/Module Index [+]

    Quicksearch

    Numeric

    Numeric is the class from which all higher-level numeric classes should inherit.

    Numeric allows instantiation of heap-allocated objects. Other core numeric classes such as Integer are implemented as immediates, which means that each Integer is a single immutable object which is always passed by value.

    a = 1
    puts 1.object_id == a.object_id   #=> true
    

    There can only ever be one instance of the integer 1, for example. Ruby ensures this by preventing instantiation and duplication.

    Integer.new(1)   #=> NoMethodError: undefined method `new' for Integer:Class
    1.dup            #=> TypeError: can't dup Fixnum
    

    For this reason, Numeric should be used when defining other numeric classes.

    Classes which inherit from Numeric must implement coerce, which returns a two-member Array containing an object that has been coerced into an instance of the new class and self (see coerce).

    Inheriting classes should also implement arithmetic operator methods (+, -, * and /) and the <=> operator (see Comparable). These methods may rely on coerce to ensure interoperability with instances of other numeric classes.

    class Tally < Numeric
      def initialize(string)
        @string = string
      end
    
      def to_s
        @string
      end
    
      def to_i
        @string.size
      end
    
      def coerce(other)
        [self.class.new('|' * other.to_i), self]
      end
    
      def <=>(other)
        to_i <=> other.to_i
      end
    
      def +(other)
        self.class.new('|' * (to_i + other.to_i))
      end
    
      def -(other)
        self.class.new('|' * (to_i - other.to_i))
      end
    
      def *(other)
        self.class.new('|' * (to_i * other.to_i))
      end
    
      def /(other)
        self.class.new('|' * (to_i / other.to_i))
      end
    end
    
    tally = Tally.new('||')
    puts tally * 2            #=> "||||"
    puts tally > 1            #=> true
    

    Public Instance Methods

    modulo(numeric) → real click to toggle source
    x.modulo(y) means x-y*(x/y).floor

    Equivalent to num.divmod(numeric)[1].

    See #divmod.

     
                   static VALUE
    num_modulo(VALUE x, VALUE y)
    {
        return rb_funcall(x, '-', 1,
                          rb_funcall(y, '*', 1,
                                     rb_funcall(x, id_div, 1, y)));
    }
                
    +num → num click to toggle source

    Unary Plus—Returns the receiver’s value.

     
                   static VALUE
    num_uplus(VALUE num)
    {
        return num;
    }
                
    -num → numeric click to toggle source

    Unary Minus—Returns the receiver’s value, negated.

     
                   static VALUE
    num_uminus(VALUE num)
    {
        VALUE zero;
    
        zero = INT2FIX(0);
        do_coerce(&zero, &num, TRUE);
    
        return rb_funcall(zero, '-', 1, num);
    }
                
    number <=> other → 0 or nil click to toggle source

    Returns zero if number equals other, otherwise nil is returned if the two values are incomparable.

     
                   static VALUE
    num_cmp(VALUE x, VALUE y)
    {
        if (x == y) return INT2FIX(0);
        return Qnil;
    }
                
    abs → numeric click to toggle source

    Returns the absolute value of num.

    12.abs         #=> 12
    (-34.56).abs   #=> 34.56
    -34.56.abs     #=> 34.56
    

    #magnitude is an alias of #abs.

     
                   static VALUE
    num_abs(VALUE num)
    {
        if (negative_int_p(num)) {
            return rb_funcall(num, idUMinus, 0);
        }
        return num;
    }
                
    abs2 → real click to toggle source

    Returns square of self.

     
                   static VALUE
    numeric_abs2(VALUE self)
    {
        return f_mul(self, self);
    }
                
    angle → 0 or float click to toggle source

    Returns 0 if the value is positive, pi otherwise.

     
                   static VALUE
    numeric_arg(VALUE self)
    {
        if (f_positive_p(self))
            return INT2FIX(0);
        return rb_const_get(rb_mMath, id_PI);
    }
                
    arg → 0 or float click to toggle source

    Returns 0 if the value is positive, pi otherwise.

     
                   static VALUE
    numeric_arg(VALUE self)
    {
        if (f_positive_p(self))
            return INT2FIX(0);
        return rb_const_get(rb_mMath, id_PI);
    }
                
    ceil → integer click to toggle source

    Returns the smallest possible Integer that is greater than or equal to num.

    Numeric achieves this by converting itself to a Float then invoking Float#ceil.

    1.ceil        #=> 1
    1.2.ceil      #=> 2
    (-1.2).ceil   #=> -1
    (-1.0).ceil   #=> -1
    
     
                   static VALUE
    num_ceil(VALUE num)
    {
        return flo_ceil(rb_Float(num));
    }
                
    coerce(numeric) → array click to toggle source

    If a numeric is the same type as num, returns an array containing numeric and num. Otherwise, returns an array with both a numeric and num represented as Float objects.

    This coercion mechanism is used by Ruby to handle mixed-type numeric operations: it is intended to find a compatible common type between the two operands of the operator.

    1.coerce(2.5)   #=> [2.5, 1.0]
    1.2.coerce(3)   #=> [3.0, 1.2]
    1.coerce(2)     #=> [2, 1]
    
     
                   static VALUE
    num_coerce(VALUE x, VALUE y)
    {
        if (CLASS_OF(x) == CLASS_OF(y))
            return rb_assoc_new(y, x);
        x = rb_Float(x);
        y = rb_Float(y);
        return rb_assoc_new(y, x);
    }
                
    conj → self click to toggle source
    conjugate → self

    Returns self.

     
                   static VALUE
    numeric_conj(VALUE self)
    {
        return self;
    }
                
    conjugate → self click to toggle source

    Returns self.

     
                   static VALUE
    numeric_conj(VALUE self)
    {
        return self;
    }
                
    denominator → integer click to toggle source

    Returns the denominator (always positive).

     
                   static VALUE
    numeric_denominator(VALUE self)
    {
        return f_denominator(f_to_r(self));
    }
                
    div(numeric) → integer click to toggle source

    Uses / to perform division, then converts the result to an integer. numeric does not define the / operator; this is left to subclasses.

    Equivalent to num.divmod(numeric)[0].

    See #divmod.

     
                   static VALUE
    num_div(VALUE x, VALUE y)
    {
        if (rb_equal(INT2FIX(0), y)) rb_num_zerodiv();
        return rb_funcall(rb_funcall(x, '/', 1, y), rb_intern("floor"), 0);
    }
                
    divmod(numeric) → array click to toggle source

    Returns an array containing the quotient and modulus obtained by dividing num by numeric.

    If q, r = * x.divmod(y), then

    q = floor(x/y)
    x = q*y+r
    

    The quotient is rounded toward -infinity, as shown in the following table:

     a    |  b  |  a.divmod(b)  |   a/b   | a.modulo(b) | a.remainder(b)
    ------+-----+---------------+---------+-------------+---------------
     13   |  4  |   3,    1     |   3     |    1        |     1
    ------+-----+---------------+---------+-------------+---------------
     13   | -4  |  -4,   -3     |  -4     |   -3        |     1
    ------+-----+---------------+---------+-------------+---------------
    -13   |  4  |  -4,    3     |  -4     |    3        |    -1
    ------+-----+---------------+---------+-------------+---------------
    -13   | -4  |   3,   -1     |   3     |   -1        |    -1
    ------+-----+---------------+---------+-------------+---------------
     11.5 |  4  |   2,    3.5   |   2.875 |    3.5      |     3.5
    ------+-----+---------------+---------+-------------+---------------
     11.5 | -4  |  -3,   -0.5   |  -2.875 |   -0.5      |     3.5
    ------+-----+---------------+---------+-------------+---------------
    -11.5 |  4  |  -3,    0.5   |  -2.875 |    0.5      |    -3.5
    ------+-----+---------------+---------+-------------+---------------
    -11.5 | -4  |   2,   -3.5   |   2.875 |   -3.5      |    -3.5

    Examples

    11.divmod(3)         #=> [3, 2]
    11.divmod(-3)        #=> [-4, -1]
    11.divmod(3.5)       #=> [3, 0.5]
    (-11).divmod(3.5)    #=> [-4, 3.0]
    (11.5).divmod(3.5)   #=> [3, 1.0]
    
     
                   static VALUE
    num_divmod(VALUE x, VALUE y)
    {
        return rb_assoc_new(num_div(x, y), num_modulo(x, y));
    }
                
    eql?(numeric) → true or false click to toggle source

    Returns true if num and numeric are the same type and have equal values.

    1 == 1.0          #=> true
    1.eql?(1.0)       #=> false
    (1.0).eql?(1.0)   #=> true
    
     
                   static VALUE
    num_eql(VALUE x, VALUE y)
    {
        if (TYPE(x) != TYPE(y)) return Qfalse;
    
        return rb_equal(x, y);
    }
                
    fdiv(numeric) → float click to toggle source

    Returns float division.

     
                   static VALUE
    num_fdiv(VALUE x, VALUE y)
    {
        return rb_funcall(rb_Float(x), '/', 1, y);
    }
                
    floor → integer click to toggle source

    Returns the largest integer less than or equal to num.

    Numeric implements this by converting an Integer to a Float and invoking Float#floor.

    1.floor      #=> 1
    (-1).floor   #=> -1
    
     
                   static VALUE
    num_floor(VALUE num)
    {
        return flo_floor(rb_Float(num));
    }
                
    i → Complex(0,num) click to toggle source

    Returns the corresponding imaginary number. Not available for complex numbers.

     
                   static VALUE
    num_imaginary(VALUE num)
    {
        return rb_complex_new(INT2FIX(0), num);
    }
                
    imag → 0 click to toggle source
    imaginary → 0

    Returns zero.

     
                   static VALUE
    numeric_imag(VALUE self)
    {
        return INT2FIX(0);
    }
                
    imaginary → 0 click to toggle source

    Returns zero.

     
                   static VALUE
    numeric_imag(VALUE self)
    {
        return INT2FIX(0);
    }
                
    initialize_copy(p1) click to toggle source

    Numerics are immutable values, which should not be copied.

    Any attempt to use this method on a Numeric will raise a TypeError.

     
                   static VALUE
    num_init_copy(VALUE x, VALUE y)
    {
        rb_raise(rb_eTypeError, "can't copy %"PRIsVALUE, rb_obj_class(x));
    
        UNREACHABLE;
    }
                
    integer? → true or false click to toggle source

    Returns true if num is an Integer (including Fixnum and Bignum).

    (1.0).integer? #=> false
    (1).integer?   #=> true
    
     
                   static VALUE
    num_int_p(VALUE num)
    {
        return Qfalse;
    }
                
    magnitude → numeric click to toggle source

    Returns the absolute value of num.

    12.abs         #=> 12
    (-34.56).abs   #=> 34.56
    -34.56.abs     #=> 34.56
    

    #magnitude is an alias of #abs.

     
                   static VALUE
    num_abs(VALUE num)
    {
        if (negative_int_p(num)) {
            return rb_funcall(num, idUMinus, 0);
        }
        return num;
    }
                
    modulo(numeric) → real click to toggle source
    x.modulo(y) means x-y*(x/y).floor

    Equivalent to num.divmod(numeric)[1].

    See #divmod.

     
                   static VALUE
    num_modulo(VALUE x, VALUE y)
    {
        return rb_funcall(x, '-', 1,
                          rb_funcall(y, '*', 1,
                                     rb_funcall(x, id_div, 1, y)));
    }
                
    negative? → true or false click to toggle source

    Returns true if num is less than 0.

     
                   static VALUE
    num_negative_p(VALUE num)
    {
        return negative_int_p(num) ? Qtrue : Qfalse;
    }
                
    nonzero? → self or nil click to toggle source

    Returns self if num is not zero, nil otherwise.

    This behavior is useful when chaining comparisons:

    a = %w( z Bb bB bb BB a aA Aa AA A )
    b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b }
    b   #=> ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]
    
     
                   static VALUE
    num_nonzero_p(VALUE num)
    {
        if (RTEST(rb_funcallv(num, rb_intern("zero?"), 0, 0))) {
            return Qnil;
        }
        return num;
    }
                
    numerator → integer click to toggle source

    Returns the numerator.

     
                   static VALUE
    numeric_numerator(VALUE self)
    {
        return f_numerator(f_to_r(self));
    }
                
    phase → 0 or float click to toggle source

    Returns 0 if the value is positive, pi otherwise.

     
                   static VALUE
    numeric_arg(VALUE self)
    {
        if (f_positive_p(self))
            return INT2FIX(0);
        return rb_const_get(rb_mMath, id_PI);
    }
                
    polar → array click to toggle source

    Returns an array; [num.abs, num.arg].

     
                   static VALUE
    numeric_polar(VALUE self)
    {
        return rb_assoc_new(f_abs(self), f_arg(self));
    }
                
    positive? → true or false click to toggle source

    Returns true if num is greater than 0.

     
                   static VALUE
    num_positive_p(VALUE num)
    {
        const ID mid = '>';
    
        if (FIXNUM_P(num)) {
            if (method_basic_p(rb_cFixnum))
                return (SIGNED_VALUE)num > (SIGNED_VALUE)INT2FIX(0) ? Qtrue : Qfalse;
        }
        else if (RB_TYPE_P(num, T_BIGNUM)) {
            if (method_basic_p(rb_cBignum))
                return BIGNUM_POSITIVE_P(num) && !rb_bigzero_p(num) ? Qtrue : Qfalse;
        }
        return compare_with_zero(num, mid);
    }
                
    quo(int_or_rat) → rat click to toggle source
    quo(flo) → flo

    Returns most exact division (rational for integers, float for floats).

     
                   static VALUE
    numeric_quo(VALUE x, VALUE y)
    {
        if (RB_TYPE_P(y, T_FLOAT)) {
            return f_fdiv(x, y);
        }
    
    #ifdef CANON
        if (canonicalization) {
            x = rb_rational_raw1(x);
        }
        else
    #endif
        {
            x = rb_convert_type(x, T_RATIONAL, "Rational", "to_r");
        }
        return rb_funcall(x, '/', 1, y);
    }
                
    real → self click to toggle source

    Returns self.

     
                   static VALUE
    numeric_real(VALUE self)
    {
        return self;
    }
                
    real? → true or false click to toggle source

    Returns true if num is a Real number. (i.e. not Complex).

     
                   static VALUE
    num_real_p(VALUE num)
    {
        return Qtrue;
    }
                
    rect → array click to toggle source
    rectangular → array

    Returns an array; [num, 0].

     
                   static VALUE
    numeric_rect(VALUE self)
    {
        return rb_assoc_new(self, INT2FIX(0));
    }
                
    rectangular → array click to toggle source

    Returns an array; [num, 0].

     
                   static VALUE
    numeric_rect(VALUE self)
    {
        return rb_assoc_new(self, INT2FIX(0));
    }
                
    remainder(numeric) → real click to toggle source
    x.remainder(y) means x-y*(x/y).truncate

    See #divmod.

     
                   static VALUE
    num_remainder(VALUE x, VALUE y)
    {
        VALUE z = rb_funcall(x, '%', 1, y);
    
        if ((!rb_equal(z, INT2FIX(0))) &&
            ((negative_int_p(x) &&
              positive_int_p(y)) ||
             (positive_int_p(x) &&
              negative_int_p(y)))) {
            return rb_funcall(z, '-', 1, y);
        }
        return z;
    }
                
    round([ndigits]) → integer or float click to toggle source

    Rounds num to a given precision in decimal digits (default 0 digits).

    Precision may be negative. Returns a floating point number when ndigits is more than zero.

    Numeric implements this by converting itself to a Float and invoking Float#round.

     
                   static VALUE
    num_round(int argc, VALUE* argv, VALUE num)
    {
        return flo_round(argc, argv, rb_Float(num));
    }
                
    singleton_method_added(p1) click to toggle source

    Trap attempts to add methods to Numeric objects. Always raises a TypeError.

    Numerics should be values; singleton_methods should not be added to them.

     
                   static VALUE
    num_sadded(VALUE x, VALUE name)
    {
        ID mid = rb_to_id(name);
        /* ruby_frame = ruby_frame->prev; */ /* pop frame for "singleton_method_added" */
        rb_remove_method_id(rb_singleton_class(x), mid);
        rb_raise(rb_eTypeError,
                 "can't define singleton method \"%"PRIsVALUE"\" for %"PRIsVALUE,
                 rb_id2str(mid),
                 rb_obj_class(x));
    
        UNREACHABLE;
    }
                
    step(by: step, to: limit) {|i| block } → self click to toggle source
    step(by: step, to: limit) → an_enumerator
    step(limit=nil, step=1) {|i| block } → self
    step(limit=nil, step=1) → an_enumerator

    Invokes the given block with the sequence of numbers starting at num, incremented by step (defaulted to 1) on each call.

    The loop finishes when the value to be passed to the block is greater than limit (if step is positive) or less than limit (if step is negative), where limit is defaulted to infinity.

    In the recommended keyword argument style, either or both of step and limit (default infinity) can be omitted. In the fixed position argument style, zero as a step (i.e. num.step(limit, 0)) is not allowed for historical compatibility reasons.

    If all the arguments are integers, the loop operates using an integer counter.

    If any of the arguments are floating point numbers, all are converted to floats, and the loop is executed the following expression:

    floor(n + n*epsilon)+ 1
    

    Where the n is the following:

    n = (limit - num)/step
    

    Otherwise, the loop starts at num, uses either the less-than (<) or greater-than (>) operator to compare the counter against limit, and increments itself using the + operator.

    If no block is given, an Enumerator is returned instead.

    For example:

    p 1.step.take(4)
    p 10.step(by: -1).take(4)
    3.step(to: 5) { |i| print i, " " }
    1.step(10, 2) { |i| print i, " " }
    Math::E.step(to: Math::PI, by: 0.2) { |f| print f, " " }
    

    Will produce:

    [1, 2, 3, 4]
    [10, 9, 8, 7]
    3 4 5
    1 3 5 7 9
    2.71828182845905 2.91828182845905 3.11828182845905
     
                   static VALUE
    num_step(int argc, VALUE *argv, VALUE from)
    {
        VALUE to, step;
        int desc, inf;
    
        RETURN_SIZED_ENUMERATOR(from, argc, argv, num_step_size);
    
        desc = num_step_scan_args(argc, argv, &to, &step);
        if (RTEST(rb_num_coerce_cmp(step, INT2FIX(0), id_eq))) {
            inf = 1;
        }
        else if (RB_TYPE_P(to, T_FLOAT)) {
            double f = RFLOAT_VALUE(to);
            inf = isinf(f) && (signbit(f) ? desc : !desc);
        }
        else inf = 0;
    
        if (FIXNUM_P(from) && (inf || FIXNUM_P(to)) && FIXNUM_P(step)) {
            long i = FIX2LONG(from);
            long diff = FIX2LONG(step);
    
            if (inf) {
                for (;; i += diff)
                    rb_yield(LONG2FIX(i));
            }
            else {
                long end = FIX2LONG(to);
    
                if (desc) {
                    for (; i >= end; i += diff)
                        rb_yield(LONG2FIX(i));
                }
                else {
                    for (; i <= end; i += diff)
                        rb_yield(LONG2FIX(i));
                }
            }
        }
        else if (!ruby_float_step(from, to, step, FALSE)) {
            VALUE i = from;
    
            if (inf) {
                for (;; i = rb_funcall(i, '+', 1, step))
                    rb_yield(i);
            }
            else {
                ID cmp = desc ? '<' : '>';
    
                for (; !RTEST(rb_funcall(i, cmp, 1, to)); i = rb_funcall(i, '+', 1, step))
                    rb_yield(i);
            }
        }
        return from;
    }
                
    to_c → complex click to toggle source

    Returns the value as a complex.

     
                   static VALUE
    numeric_to_c(VALUE self)
    {
        return rb_complex_new1(self);
    }
                
    to_int → integer click to toggle source

    Invokes the child class’s to_i method to convert num to an integer.

    1.0.class => Float
    1.0.to_int.class => Fixnum
    1.0.to_i.class => Fixnum
     
                   static VALUE
    num_to_int(VALUE num)
    {
        return rb_funcallv(num, id_to_i, 0, 0);
    }
                
    truncate → integer click to toggle source

    Returns num truncated to an Integer.

    Numeric implements this by converting its value to a Float and invoking Float#truncate.

     
                   static VALUE
    num_truncate(VALUE num)
    {
        return flo_truncate(rb_Float(num));
    }
                
    zero? → true or false click to toggle source

    Returns true if num has a zero value.

     
                   static VALUE
    num_zero_p(VALUE num)
    {
        if (rb_equal(num, INT2FIX(0))) {
            return Qtrue;
        }
        return Qfalse;
    }