Class: Float (Ruby 2.3.4)

    In Files

    • complex.c
    • numeric.c
    • rational.c

    Class/Module Index [+]

    Quicksearch

    Float

    Float objects represent inexact real numbers using the native architecture's double-precision floating point representation.

    Floating point has a different arithmetic and is an inexact number. So you should know its esoteric system. see following:

    Constants

    DIG

    The minimum number of significant decimal digits in a double-precision floating point.

    Usually defaults to 15.

    EPSILON

    The difference between 1 and the smallest double-precision floating point number greater than 1.

    Usually defaults to 2.2204460492503131e-16.

    INFINITY

    An expression representing positive infinity.

    MANT_DIG

    The number of base digits for the double data type.

    Usually defaults to 53.

    MAX

    The largest possible integer in a double-precision floating point number.

    Usually defaults to 1.7976931348623157e+308.

    MAX_10_EXP

    The largest positive exponent in a double-precision floating point where 10 raised to this power minus 1.

    Usually defaults to 308.

    MAX_EXP

    The largest possible exponent value in a double-precision floating point.

    Usually defaults to 1024.

    MIN

    The smallest positive normalized number in a double-precision floating point.

    Usually defaults to 2.2250738585072014e-308.

    If the platform supports denormalized numbers, there are numbers between zero and Float::MIN. 0.0.next_float returns the smallest positive floating point number including denormalized numbers.

    MIN_10_EXP

    The smallest negative exponent in a double-precision floating point where 10 raised to this power minus 1.

    Usually defaults to -307.

    MIN_EXP

    The smallest posable exponent value in a double-precision floating point.

    Usually defaults to -1021.

    NAN

    An expression representing a value which is “not a number”.

    RADIX

    The base of the floating point, or number of unique digits used to represent the number.

    Usually defaults to 2 on most systems, which would represent a base-10 decimal.

    ROUNDS

    Represents the rounding mode for floating point addition.

    Usually defaults to 1, rounding to the nearest number.

    Other modes include:

    -1

    Indeterminable

    0

    Rounding towards zero

    1

    Rounding to the nearest number

    2

    Rounding towards positive infinity

    3

    Rounding towards negative infinity

    Public Instance Methods

    float % other → float click to toggle source

    Return the modulo after division of float by other.

    6543.21.modulo(137)      #=> 104.21
    6543.21.modulo(137.24)   #=> 92.9299999999996
    
     
                   static VALUE
    flo_mod(VALUE x, VALUE y)
    {
        double fy;
    
        if (RB_TYPE_P(y, T_FIXNUM)) {
            fy = (double)FIX2LONG(y);
        }
        else if (RB_TYPE_P(y, T_BIGNUM)) {
            fy = rb_big2dbl(y);
        }
        else if (RB_TYPE_P(y, T_FLOAT)) {
            fy = RFLOAT_VALUE(y);
        }
        else {
            return rb_num_coerce_bin(x, y, '%');
        }
        return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
    }
                
    float * other → float click to toggle source

    Returns a new float which is the product of float and other.

     
                   static VALUE
    flo_mul(VALUE x, VALUE y)
    {
        if (RB_TYPE_P(y, T_FIXNUM)) {
            return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y));
        }
        else if (RB_TYPE_P(y, T_BIGNUM)) {
            return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y));
        }
        else if (RB_TYPE_P(y, T_FLOAT)) {
            return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y));
        }
        else {
            return rb_num_coerce_bin(x, y, '*');
        }
    }
                
    float ** other → float click to toggle source

    Raises float to the power of other.

    2.0**3      #=> 8.0
    
     
                   static VALUE
    flo_pow(VALUE x, VALUE y)
    {
        double dx, dy;
        if (RB_TYPE_P(y, T_FIXNUM)) {
            dx = RFLOAT_VALUE(x);
            dy = (double)FIX2LONG(y);
        }
        else if (RB_TYPE_P(y, T_BIGNUM)) {
            dx = RFLOAT_VALUE(x);
            dy = rb_big2dbl(y);
        }
        else if (RB_TYPE_P(y, T_FLOAT)) {
            dx = RFLOAT_VALUE(x);
            dy = RFLOAT_VALUE(y);
            if (dx < 0 && dy != round(dy))
                return rb_funcall(rb_complex_raw1(x), idPow, 1, y);
        }
        else {
            return rb_num_coerce_bin(x, y, idPow);
        }
        return DBL2NUM(pow(dx, dy));
    }
                
    float + other → float click to toggle source

    Returns a new float which is the sum of float and other.

     
                   static VALUE
    flo_plus(VALUE x, VALUE y)
    {
        if (RB_TYPE_P(y, T_FIXNUM)) {
            return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y));
        }
        else if (RB_TYPE_P(y, T_BIGNUM)) {
            return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y));
        }
        else if (RB_TYPE_P(y, T_FLOAT)) {
            return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y));
        }
        else {
            return rb_num_coerce_bin(x, y, '+');
        }
    }
                
    float - other → float click to toggle source

    Returns a new float which is the difference of float and other.

     
                   static VALUE
    flo_minus(VALUE x, VALUE y)
    {
        if (RB_TYPE_P(y, T_FIXNUM)) {
            return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y));
        }
        else if (RB_TYPE_P(y, T_BIGNUM)) {
            return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y));
        }
        else if (RB_TYPE_P(y, T_FLOAT)) {
            return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y));
        }
        else {
            return rb_num_coerce_bin(x, y, '-');
        }
    }
                
    -float → float click to toggle source

    Returns float, negated.

     
                   static VALUE
    flo_uminus(VALUE flt)
    {
        return DBL2NUM(-RFLOAT_VALUE(flt));
    }
                
    float / other → float click to toggle source

    Returns a new float which is the result of dividing float by other.

     
                   static VALUE
    flo_div(VALUE x, VALUE y)
    {
        long f_y;
        double d;
    
        if (RB_TYPE_P(y, T_FIXNUM)) {
            f_y = FIX2LONG(y);
            return DBL2NUM(RFLOAT_VALUE(x) / (double)f_y);
        }
        else if (RB_TYPE_P(y, T_BIGNUM)) {
            d = rb_big2dbl(y);
            return DBL2NUM(RFLOAT_VALUE(x) / d);
        }
        else if (RB_TYPE_P(y, T_FLOAT)) {
            return DBL2NUM(RFLOAT_VALUE(x) / RFLOAT_VALUE(y));
        }
        else {
            return rb_num_coerce_bin(x, y, '/');
        }
    }
                
    float < real → true or false click to toggle source

    Returns true if float is less than real.

    The result of NaN < NaN is undefined, so the implementation-dependent value is returned.

     
                   static VALUE
    flo_lt(VALUE x, VALUE y)
    {
        double a, b;
    
        a = RFLOAT_VALUE(x);
        if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
            VALUE rel = rb_integer_float_cmp(y, x);
            if (FIXNUM_P(rel))
                return -FIX2INT(rel) < 0 ? Qtrue : Qfalse;
            return Qfalse;
        }
        else if (RB_TYPE_P(y, T_FLOAT)) {
            b = RFLOAT_VALUE(y);
    #if defined(_MSC_VER) && _MSC_VER < 1300
            if (isnan(b)) return Qfalse;
    #endif
        }
        else {
            return rb_num_coerce_relop(x, y, '<');
        }
    #if defined(_MSC_VER) && _MSC_VER < 1300
        if (isnan(a)) return Qfalse;
    #endif
        return (a < b)?Qtrue:Qfalse;
    }
                
    float <= real → true or false click to toggle source

    Returns true if float is less than or equal to real.

    The result of NaN <= NaN is undefined, so the implementation-dependent value is returned.

     
                   static VALUE
    flo_le(VALUE x, VALUE y)
    {
        double a, b;
    
        a = RFLOAT_VALUE(x);
        if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
            VALUE rel = rb_integer_float_cmp(y, x);
            if (FIXNUM_P(rel))
                return -FIX2INT(rel) <= 0 ? Qtrue : Qfalse;
            return Qfalse;
        }
        else if (RB_TYPE_P(y, T_FLOAT)) {
            b = RFLOAT_VALUE(y);
    #if defined(_MSC_VER) && _MSC_VER < 1300
            if (isnan(b)) return Qfalse;
    #endif
        }
        else {
            return rb_num_coerce_relop(x, y, idLE);
        }
    #if defined(_MSC_VER) && _MSC_VER < 1300
        if (isnan(a)) return Qfalse;
    #endif
        return (a <= b)?Qtrue:Qfalse;
    }
                
    float <=> real → -1, 0, +1 or nil click to toggle source

    Returns -1, 0, +1 or nil depending on whether float is less than, equal to, or greater than real. This is the basis for the tests in Comparable.

    The result of NaN <=> NaN is undefined, so the implementation-dependent value is returned.

    nil is returned if the two values are incomparable.

     
                   static VALUE
    flo_cmp(VALUE x, VALUE y)
    {
        double a, b;
        VALUE i;
    
        a = RFLOAT_VALUE(x);
        if (isnan(a)) return Qnil;
        if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
            VALUE rel = rb_integer_float_cmp(y, x);
            if (FIXNUM_P(rel))
                return INT2FIX(-FIX2INT(rel));
            return rel;
        }
        else if (RB_TYPE_P(y, T_FLOAT)) {
            b = RFLOAT_VALUE(y);
        }
        else {
            if (isinf(a) && (i = rb_check_funcall(y, rb_intern("infinite?"), 0, 0)) != Qundef) {
                if (RTEST(i)) {
                    int j = rb_cmpint(i, x, y);
                    j = (a > 0.0) ? (j > 0 ? 0 : +1) : (j < 0 ? 0 : -1);
                    return INT2FIX(j);
                }
                if (a > 0.0) return INT2FIX(1);
                return INT2FIX(-1);
            }
            return rb_num_coerce_cmp(x, y, id_cmp);
        }
        return rb_dbl_cmp(a, b);
    }
                
    float == obj → true or false click to toggle source

    Returns true only if obj has the same value as float. Contrast this with #eql?, which requires obj to be a Float.

    The result of NaN == NaN is undefined, so the implementation-dependent value is returned.

    1.0 == 1   #=> true
    
     
                   static VALUE
    flo_eq(VALUE x, VALUE y)
    {
        volatile double a, b;
    
        if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
            return rb_integer_float_eq(y, x);
        }
        else if (RB_TYPE_P(y, T_FLOAT)) {
            b = RFLOAT_VALUE(y);
    #if defined(_MSC_VER) && _MSC_VER < 1300
            if (isnan(b)) return Qfalse;
    #endif
        }
        else {
            return num_equal(x, y);
        }
        a = RFLOAT_VALUE(x);
    #if defined(_MSC_VER) && _MSC_VER < 1300
        if (isnan(a)) return Qfalse;
    #endif
        return (a == b)?Qtrue:Qfalse;
    }
                
    float == obj → true or false click to toggle source

    Returns true only if obj has the same value as float. Contrast this with #eql?, which requires obj to be a Float.

    The result of NaN == NaN is undefined, so the implementation-dependent value is returned.

    1.0 == 1   #=> true
    
     
                   static VALUE
    flo_eq(VALUE x, VALUE y)
    {
        volatile double a, b;
    
        if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
            return rb_integer_float_eq(y, x);
        }
        else if (RB_TYPE_P(y, T_FLOAT)) {
            b = RFLOAT_VALUE(y);
    #if defined(_MSC_VER) && _MSC_VER < 1300
            if (isnan(b)) return Qfalse;
    #endif
        }
        else {
            return num_equal(x, y);
        }
        a = RFLOAT_VALUE(x);
    #if defined(_MSC_VER) && _MSC_VER < 1300
        if (isnan(a)) return Qfalse;
    #endif
        return (a == b)?Qtrue:Qfalse;
    }
                
    float > real → true or false click to toggle source

    Returns true if float is greater than real.

    The result of NaN > NaN is undefined, so the implementation-dependent value is returned.

     
                   static VALUE
    flo_gt(VALUE x, VALUE y)
    {
        double a, b;
    
        a = RFLOAT_VALUE(x);
        if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
            VALUE rel = rb_integer_float_cmp(y, x);
            if (FIXNUM_P(rel))
                return -FIX2INT(rel) > 0 ? Qtrue : Qfalse;
            return Qfalse;
        }
        else if (RB_TYPE_P(y, T_FLOAT)) {
            b = RFLOAT_VALUE(y);
    #if defined(_MSC_VER) && _MSC_VER < 1300
            if (isnan(b)) return Qfalse;
    #endif
        }
        else {
            return rb_num_coerce_relop(x, y, '>');
        }
    #if defined(_MSC_VER) && _MSC_VER < 1300
        if (isnan(a)) return Qfalse;
    #endif
        return (a > b)?Qtrue:Qfalse;
    }
                
    float >= real → true or false click to toggle source

    Returns true if float is greater than or equal to real.

    The result of NaN >= NaN is undefined, so the implementation-dependent value is returned.

     
                   static VALUE
    flo_ge(VALUE x, VALUE y)
    {
        double a, b;
    
        a = RFLOAT_VALUE(x);
        if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
            VALUE rel = rb_integer_float_cmp(y, x);
            if (FIXNUM_P(rel))
                return -FIX2INT(rel) >= 0 ? Qtrue : Qfalse;
            return Qfalse;
        }
        else if (RB_TYPE_P(y, T_FLOAT)) {
            b = RFLOAT_VALUE(y);
    #if defined(_MSC_VER) && _MSC_VER < 1300
            if (isnan(b)) return Qfalse;
    #endif
        }
        else {
            return rb_num_coerce_relop(x, y, idGE);
        }
    #if defined(_MSC_VER) && _MSC_VER < 1300
        if (isnan(a)) return Qfalse;
    #endif
        return (a >= b)?Qtrue:Qfalse;
    }
                
    abs → float click to toggle source

    Returns the absolute value of float.

    (-34.56).abs   #=> 34.56
    -34.56.abs     #=> 34.56
    
     
                   static VALUE
    flo_abs(VALUE flt)
    {
        double val = fabs(RFLOAT_VALUE(flt));
        return DBL2NUM(val);
    }
                
    angle → 0 or float click to toggle source

    Returns 0 if the value is positive, pi otherwise.

     
                   static VALUE
    float_arg(VALUE self)
    {
        if (isnan(RFLOAT_VALUE(self)))
            return self;
        if (f_tpositive_p(self))
            return INT2FIX(0);
        return rb_const_get(rb_mMath, id_PI);
    }
                
    arg → 0 or float click to toggle source

    Returns 0 if the value is positive, pi otherwise.

     
                   static VALUE
    float_arg(VALUE self)
    {
        if (isnan(RFLOAT_VALUE(self)))
            return self;
        if (f_tpositive_p(self))
            return INT2FIX(0);
        return rb_const_get(rb_mMath, id_PI);
    }
                
    ceil → integer click to toggle source

    Returns the smallest Integer greater than or equal to float.

    1.2.ceil      #=> 2
    2.0.ceil      #=> 2
    (-1.2).ceil   #=> -1
    (-2.0).ceil   #=> -2
    
     
                   static VALUE
    flo_ceil(VALUE num)
    {
        double f = ceil(RFLOAT_VALUE(num));
        long val;
    
        if (!FIXABLE(f)) {
            return rb_dbl2big(f);
        }
        val = (long)f;
        return LONG2FIX(val);
    }
                
    coerce(numeric) → array click to toggle source

    Returns an array with both a numeric and a float represented as Float objects.

    This is achieved by converting a numeric to a Float.

    1.2.coerce(3)       #=> [3.0, 1.2]
    2.5.coerce(1.1)     #=> [1.1, 2.5]
    
     
                   static VALUE
    flo_coerce(VALUE x, VALUE y)
    {
        return rb_assoc_new(rb_Float(y), x);
    }
                
    denominator → integer click to toggle source

    Returns the denominator (always positive). The result is machine dependent.

    See numerator.

     
                   static VALUE
    float_denominator(VALUE self)
    {
        double d = RFLOAT_VALUE(self);
        if (isinf(d) || isnan(d))
            return INT2FIX(1);
        return rb_call_super(0, 0);
    }
                
    divmod(numeric) → array click to toggle source

    See Numeric#divmod.

    42.0.divmod 6 #=> [7, 0.0]
    42.0.divmod 5 #=> [8, 2.0]
    
     
                   static VALUE
    flo_divmod(VALUE x, VALUE y)
    {
        double fy, div, mod;
        volatile VALUE a, b;
    
        if (RB_TYPE_P(y, T_FIXNUM)) {
            fy = (double)FIX2LONG(y);
        }
        else if (RB_TYPE_P(y, T_BIGNUM)) {
            fy = rb_big2dbl(y);
        }
        else if (RB_TYPE_P(y, T_FLOAT)) {
            fy = RFLOAT_VALUE(y);
        }
        else {
            return rb_num_coerce_bin(x, y, id_divmod);
        }
        flodivmod(RFLOAT_VALUE(x), fy, &div, &mod);
        a = dbl2ival(div);
        b = DBL2NUM(mod);
        return rb_assoc_new(a, b);
    }
                
    eql?(obj) → true or false click to toggle source

    Returns true only if obj is a Float with the same value as float. Contrast this with Float#==, which performs type conversions.

    The result of NaN.eql?(NaN) is undefined, so the implementation-dependent value is returned.

    1.0.eql?(1)   #=> false
    
     
                   static VALUE
    flo_eql(VALUE x, VALUE y)
    {
        if (RB_TYPE_P(y, T_FLOAT)) {
            double a = RFLOAT_VALUE(x);
            double b = RFLOAT_VALUE(y);
    #if defined(_MSC_VER) && _MSC_VER < 1300
            if (isnan(a) || isnan(b)) return Qfalse;
    #endif
            if (a == b)
                return Qtrue;
        }
        return Qfalse;
    }
                
    fdiv(numeric) → float click to toggle source

    Returns float / numeric, same as Float#/.

     
                   static VALUE
    flo_quo(VALUE x, VALUE y)
    {
        return rb_funcall(x, '/', 1, y);
    }
                
    finite? → true or false click to toggle source

    Returns true if float is a valid IEEE floating point number (it is not infinite, and #nan? is false).

     
                   static VALUE
    flo_is_finite_p(VALUE num)
    {
        double value = RFLOAT_VALUE(num);
    
    #ifdef HAVE_ISFINITE
        if (!isfinite(value))
            return Qfalse;
    #else
        if (isinf(value) || isnan(value))
            return Qfalse;
    #endif
    
        return Qtrue;
    }
                
    floor → integer click to toggle source

    Returns the largest integer less than or equal to float.

    1.2.floor      #=> 1
    2.0.floor      #=> 2
    (-1.2).floor   #=> -2
    (-2.0).floor   #=> -2
    
     
                   static VALUE
    flo_floor(VALUE num)
    {
        double f = floor(RFLOAT_VALUE(num));
        long val;
    
        if (!FIXABLE(f)) {
            return rb_dbl2big(f);
        }
        val = (long)f;
        return LONG2FIX(val);
    }
                
    hash → integer click to toggle source

    Returns a hash code for this float.

    See also Object#hash.

     
                   static VALUE
    flo_hash(VALUE num)
    {
        return rb_dbl_hash(RFLOAT_VALUE(num));
    }
                
    infinite? → nil, -1, +1 click to toggle source

    Return values corresponding to the value of float:

    finite

    nil

    -Infinity

    -1

    +Infinity

    1

    For example:

    (0.0).infinite?        #=> nil
    (-1.0/0.0).infinite?   #=> -1
    (+1.0/0.0).infinite?   #=> 1
    
     
                   static VALUE
    flo_is_infinite_p(VALUE num)
    {
        double value = RFLOAT_VALUE(num);
    
        if (isinf(value)) {
            return INT2FIX( value < 0 ? -1 : 1 );
        }
    
        return Qnil;
    }
                
    inspect() click to toggle source
    Alias for: to_s
    magnitude → float click to toggle source

    Returns the absolute value of float.

    (-34.56).abs   #=> 34.56
    -34.56.abs     #=> 34.56
    
     
                   static VALUE
    flo_abs(VALUE flt)
    {
        double val = fabs(RFLOAT_VALUE(flt));
        return DBL2NUM(val);
    }
                
    modulo(other) → float click to toggle source

    Return the modulo after division of float by other.

    6543.21.modulo(137)      #=> 104.21
    6543.21.modulo(137.24)   #=> 92.9299999999996
    
     
                   static VALUE
    flo_mod(VALUE x, VALUE y)
    {
        double fy;
    
        if (RB_TYPE_P(y, T_FIXNUM)) {
            fy = (double)FIX2LONG(y);
        }
        else if (RB_TYPE_P(y, T_BIGNUM)) {
            fy = rb_big2dbl(y);
        }
        else if (RB_TYPE_P(y, T_FLOAT)) {
            fy = RFLOAT_VALUE(y);
        }
        else {
            return rb_num_coerce_bin(x, y, '%');
        }
        return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
    }
                
    nan? → true or false click to toggle source

    Returns true if float is an invalid IEEE floating point number.

    a = -1.0      #=> -1.0
    a.nan?        #=> false
    a = 0.0/0.0   #=> NaN
    a.nan?        #=> true
    
     
                   static VALUE
    flo_is_nan_p(VALUE num)
    {
        double value = RFLOAT_VALUE(num);
    
        return isnan(value) ? Qtrue : Qfalse;
    }
                
    negative? → true or false click to toggle source

    Returns true if float is less than 0.

     
                   static VALUE
    flo_negative_p(VALUE num)
    {
        double f = RFLOAT_VALUE(num);
        return f < 0.0 ? Qtrue : Qfalse;
    }
                
    next_float → float click to toggle source

    Returns the next representable floating-point number.

    Float::MAX.next_float and Float::INFINITY.next_float is Float::INFINITY.

    Float::NAN.next_float is Float::NAN.

    For example:

    p 0.01.next_float  #=> 0.010000000000000002
    p 1.0.next_float   #=> 1.0000000000000002
    p 100.0.next_float #=> 100.00000000000001
    
    p 0.01.next_float - 0.01   #=> 1.734723475976807e-18
    p 1.0.next_float - 1.0     #=> 2.220446049250313e-16
    p 100.0.next_float - 100.0 #=> 1.4210854715202004e-14
    
    f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.next_float }
    #=> 0x1.47ae147ae147bp-7 0.01
    #   0x1.47ae147ae147cp-7 0.010000000000000002
    #   0x1.47ae147ae147dp-7 0.010000000000000004
    #   0x1.47ae147ae147ep-7 0.010000000000000005
    #   0x1.47ae147ae147fp-7 0.010000000000000007
    #   0x1.47ae147ae148p-7  0.010000000000000009
    #   0x1.47ae147ae1481p-7 0.01000000000000001
    #   0x1.47ae147ae1482p-7 0.010000000000000012
    #   0x1.47ae147ae1483p-7 0.010000000000000014
    #   0x1.47ae147ae1484p-7 0.010000000000000016
    #   0x1.47ae147ae1485p-7 0.010000000000000018
    #   0x1.47ae147ae1486p-7 0.01000000000000002
    #   0x1.47ae147ae1487p-7 0.010000000000000021
    #   0x1.47ae147ae1488p-7 0.010000000000000023
    #   0x1.47ae147ae1489p-7 0.010000000000000024
    #   0x1.47ae147ae148ap-7 0.010000000000000026
    #   0x1.47ae147ae148bp-7 0.010000000000000028
    #   0x1.47ae147ae148cp-7 0.01000000000000003
    #   0x1.47ae147ae148dp-7 0.010000000000000031
    #   0x1.47ae147ae148ep-7 0.010000000000000033
    
    f = 0.0
    100.times { f += 0.1 }
    p f                            #=> 9.99999999999998       # should be 10.0 in the ideal world.
    p 10-f                         #=> 1.9539925233402755e-14 # the floating-point error.
    p(10.0.next_float-10)          #=> 1.7763568394002505e-15 # 1 ulp (units in the last place).
    p((10-f)/(10.0.next_float-10)) #=> 11.0                   # the error is 11 ulp.
    p((10-f)/(10*Float::EPSILON))  #=> 8.8                    # approximation of the above.
    p "%a" % f                     #=> "0x1.3fffffffffff5p+3" # the last hex digit is 5.  16 - 5 = 11 ulp.
    
     
                   static VALUE
    flo_next_float(VALUE vx)
    {
        double x, y;
        x = NUM2DBL(vx);
        y = nextafter(x, INFINITY);
        return DBL2NUM(y);
    }
                
    numerator → integer click to toggle source

    Returns the numerator. The result is machine dependent.

    n = 0.3.numerator    #=> 5404319552844595
    d = 0.3.denominator  #=> 18014398509481984
    n.fdiv(d)            #=> 0.3
    
     
                   static VALUE
    float_numerator(VALUE self)
    {
        double d = RFLOAT_VALUE(self);
        if (isinf(d) || isnan(d))
            return self;
        return rb_call_super(0, 0);
    }
                
    phase → 0 or float click to toggle source

    Returns 0 if the value is positive, pi otherwise.

     
                   static VALUE
    float_arg(VALUE self)
    {
        if (isnan(RFLOAT_VALUE(self)))
            return self;
        if (f_tpositive_p(self))
            return INT2FIX(0);
        return rb_const_get(rb_mMath, id_PI);
    }
                
    positive? → true or false click to toggle source

    Returns true if float is greater than 0.

     
                   static VALUE
    flo_positive_p(VALUE num)
    {
        double f = RFLOAT_VALUE(num);
        return f > 0.0 ? Qtrue : Qfalse;
    }
                
    prev_float → float click to toggle source

    Returns the previous representable floating-point number.

    (-Float::MAX).prev_float and (-Float::INFINITY).prev_float is -Float::INFINITY.

    Float::NAN.prev_float is Float::NAN.

    For example:

    p 0.01.prev_float  #=> 0.009999999999999998
    p 1.0.prev_float   #=> 0.9999999999999999
    p 100.0.prev_float #=> 99.99999999999999
    
    p 0.01 - 0.01.prev_float   #=> 1.734723475976807e-18
    p 1.0 - 1.0.prev_float     #=> 1.1102230246251565e-16
    p 100.0 - 100.0.prev_float #=> 1.4210854715202004e-14
    
    f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.prev_float }
    #=> 0x1.47ae147ae147bp-7 0.01
    #   0x1.47ae147ae147ap-7 0.009999999999999998
    #   0x1.47ae147ae1479p-7 0.009999999999999997
    #   0x1.47ae147ae1478p-7 0.009999999999999995
    #   0x1.47ae147ae1477p-7 0.009999999999999993
    #   0x1.47ae147ae1476p-7 0.009999999999999992
    #   0x1.47ae147ae1475p-7 0.00999999999999999
    #   0x1.47ae147ae1474p-7 0.009999999999999988
    #   0x1.47ae147ae1473p-7 0.009999999999999986
    #   0x1.47ae147ae1472p-7 0.009999999999999985
    #   0x1.47ae147ae1471p-7 0.009999999999999983
    #   0x1.47ae147ae147p-7  0.009999999999999981
    #   0x1.47ae147ae146fp-7 0.00999999999999998
    #   0x1.47ae147ae146ep-7 0.009999999999999978
    #   0x1.47ae147ae146dp-7 0.009999999999999976
    #   0x1.47ae147ae146cp-7 0.009999999999999974
    #   0x1.47ae147ae146bp-7 0.009999999999999972
    #   0x1.47ae147ae146ap-7 0.00999999999999997
    #   0x1.47ae147ae1469p-7 0.009999999999999969
    #   0x1.47ae147ae1468p-7 0.009999999999999967
    
     
                   static VALUE
    flo_prev_float(VALUE vx)
    {
        double x, y;
        x = NUM2DBL(vx);
        y = nextafter(x, -INFINITY);
        return DBL2NUM(y);
    }
                
    quo(numeric) → float click to toggle source

    Returns float / numeric, same as Float#/.

     
                   static VALUE
    flo_quo(VALUE x, VALUE y)
    {
        return rb_funcall(x, '/', 1, y);
    }
                
    rationalize([eps]) → rational click to toggle source

    Returns a simpler approximation of the value (flt-|eps| <= result <= flt+|eps|). if the optional eps is not given, it will be chosen automatically.

    0.3.rationalize          #=> (3/10)
    1.333.rationalize        #=> (1333/1000)
    1.333.rationalize(0.01)  #=> (4/3)
    

    See to_r.

     
                   static VALUE
    float_rationalize(int argc, VALUE *argv, VALUE self)
    {
        VALUE e;
    
        if (f_negative_p(self))
            return f_negate(float_rationalize(argc, argv, f_abs(self)));
    
        rb_scan_args(argc, argv, "01", &e);
    
        if (argc != 0) {
            return rb_flt_rationalize_with_prec(self, e);
        }
        else {
            return rb_flt_rationalize(self);
        }
    }
                
    round([ndigits]) → integer or float click to toggle source

    Rounds float to a given precision in decimal digits (default 0 digits).

    Precision may be negative. Returns a floating point number when ndigits is more than zero.

    1.4.round      #=> 1
    1.5.round      #=> 2
    1.6.round      #=> 2
    (-1.5).round   #=> -2
    
    1.234567.round(2)  #=> 1.23
    1.234567.round(3)  #=> 1.235
    1.234567.round(4)  #=> 1.2346
    1.234567.round(5)  #=> 1.23457
    
    34567.89.round(-5) #=> 0
    34567.89.round(-4) #=> 30000
    34567.89.round(-3) #=> 35000
    34567.89.round(-2) #=> 34600
    34567.89.round(-1) #=> 34570
    34567.89.round(0)  #=> 34568
    34567.89.round(1)  #=> 34567.9
    34567.89.round(2)  #=> 34567.89
    34567.89.round(3)  #=> 34567.89
    
     
                   static VALUE
    flo_round(int argc, VALUE *argv, VALUE num)
    {
        VALUE nd;
        double number, f;
        int ndigits = 0;
        int binexp;
        enum {float_dig = DBL_DIG+2};
    
        if (argc > 0 && rb_scan_args(argc, argv, "01", &nd) == 1) {
            ndigits = NUM2INT(nd);
        }
        if (ndigits < 0) {
            return int_round_0(flo_truncate(num), ndigits);
        }
        number  = RFLOAT_VALUE(num);
        if (ndigits == 0) {
            return dbl2ival(number);
        }
        frexp(number, &binexp);
    
    /* Let `exp` be such that `number` is written as:"0.#{digits}e#{exp}",
       i.e. such that  10 ** (exp - 1) <= |number| < 10 ** exp
       Recall that up to float_dig digits can be needed to represent a double,
       so if ndigits + exp >= float_dig, the intermediate value (number * 10 ** ndigits)
       will be an integer and thus the result is the original number.
       If ndigits + exp <= 0, the result is 0 or "1e#{exp}", so
       if ndigits + exp < 0, the result is 0.
       We have:
            2 ** (binexp-1) <= |number| < 2 ** binexp
            10 ** ((binexp-1)/log_2(10)) <= |number| < 10 ** (binexp/log_2(10))
            If binexp >= 0, and since log_2(10) = 3.322259:
               10 ** (binexp/4 - 1) < |number| < 10 ** (binexp/3)
               floor(binexp/4) <= exp <= ceil(binexp/3)
            If binexp <= 0, swap the /4 and the /3
            So if ndigits + floor(binexp/(4 or 3)) >= float_dig, the result is number
            If ndigits + ceil(binexp/(3 or 4)) < 0 the result is 0
    */
        if (isinf(number) || isnan(number) ||
            (ndigits >= float_dig - (binexp > 0 ? binexp / 4 : binexp / 3 - 1))) {
            return num;
        }
        if (ndigits < - (binexp > 0 ? binexp / 3 + 1 : binexp / 4)) {
            return DBL2NUM(0);
        }
        f = pow(10, ndigits);
        return DBL2NUM(round(number * f) / f);
    }
                
    to_f → self click to toggle source

    Since float is already a float, returns self.

     
                   static VALUE
    flo_to_f(VALUE num)
    {
        return num;
    }
                
    to_i → integer click to toggle source
    to_int → integer

    Returns the float truncated to an Integer.

    Synonyms are to_i, to_int, and truncate.

     
                   static VALUE
    flo_truncate(VALUE num)
    {
        double f = RFLOAT_VALUE(num);
        long val;
    
        if (f > 0.0) f = floor(f);
        if (f < 0.0) f = ceil(f);
    
        if (!FIXABLE(f)) {
            return rb_dbl2big(f);
        }
        val = (long)f;
        return LONG2FIX(val);
    }
                
    to_int → integer click to toggle source

    Returns the float truncated to an Integer.

    Synonyms are to_i, to_int, and truncate.

     
                   static VALUE
    flo_truncate(VALUE num)
    {
        double f = RFLOAT_VALUE(num);
        long val;
    
        if (f > 0.0) f = floor(f);
        if (f < 0.0) f = ceil(f);
    
        if (!FIXABLE(f)) {
            return rb_dbl2big(f);
        }
        val = (long)f;
        return LONG2FIX(val);
    }
                
    to_r → rational click to toggle source

    Returns the value as a rational.

    NOTE: 0.3.to_r isn’t the same as ‘0.3’.to_r. The latter is equivalent to ‘3/10’.to_r, but the former isn’t so.

    2.0.to_r    #=> (2/1)
    2.5.to_r    #=> (5/2)
    -0.75.to_r  #=> (-3/4)
    0.0.to_r    #=> (0/1)
    

    See rationalize.

     
                   static VALUE
    float_to_r(VALUE self)
    {
        VALUE f, n;
    
        float_decode_internal(self, &f, &n);
    #if FLT_RADIX == 2
        {
            long ln = FIX2LONG(n);
    
            if (ln == 0)
                return f_to_r(f);
            if (ln > 0)
                return f_to_r(f_lshift(f, n));
            ln = -ln;
            return rb_rational_new2(f, f_lshift(ONE, INT2FIX(ln)));
        }
    #else
        return f_to_r(f_mul(f, f_expt(INT2FIX(FLT_RADIX), n)));
    #endif
    }
                
    to_s → string click to toggle source

    Returns a string containing a representation of self. As well as a fixed or exponential form of the float, the call may return NaN, Infinity, and -Infinity.

     
                   static VALUE
    flo_to_s(VALUE flt)
    {
        enum {decimal_mant = DBL_MANT_DIG-DBL_DIG};
        enum {float_dig = DBL_DIG+1};
        char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10];
        double value = RFLOAT_VALUE(flt);
        VALUE s;
        char *p, *e;
        int sign, decpt, digs;
    
        if (isinf(value))
            return rb_usascii_str_new2(value < 0 ? "-Infinity" : "Infinity");
        else if (isnan(value))
            return rb_usascii_str_new2("NaN");
    
        p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e);
        s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0);
        if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1;
        memcpy(buf, p, digs);
        xfree(p);
        if (decpt > 0) {
            if (decpt < digs) {
                memmove(buf + decpt + 1, buf + decpt, digs - decpt);
                buf[decpt] = '.';
                rb_str_cat(s, buf, digs + 1);
            }
            else if (decpt <= DBL_DIG) {
                long len;
                char *ptr;
                rb_str_cat(s, buf, digs);
                rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2);
                ptr = RSTRING_PTR(s) + len;
                if (decpt > digs) {
                    memset(ptr, '0', decpt - digs);
                    ptr += decpt - digs;
                }
                memcpy(ptr, ".0", 2);
            }
            else {
                goto exp;
            }
        }
        else if (decpt > -4) {
            long len;
            char *ptr;
            rb_str_cat(s, "0.", 2);
            rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs);
            ptr = RSTRING_PTR(s);
            memset(ptr += len, '0', -decpt);
            memcpy(ptr -= decpt, buf, digs);
        }
        else {
          exp:
            if (digs > 1) {
                memmove(buf + 2, buf + 1, digs - 1);
            }
            else {
                buf[2] = '0';
                digs++;
            }
            buf[1] = '.';
            rb_str_cat(s, buf, digs + 1);
            rb_str_catf(s, "e%+03d", decpt - 1);
        }
        return s;
    }
                
    Also aliased as: inspect
    truncate → integer click to toggle source

    Returns the float truncated to an Integer.

    Synonyms are to_i, to_int, and truncate.

     
                   static VALUE
    flo_truncate(VALUE num)
    {
        double f = RFLOAT_VALUE(num);
        long val;
    
        if (f > 0.0) f = floor(f);
        if (f < 0.0) f = ceil(f);
    
        if (!FIXABLE(f)) {
            return rb_dbl2big(f);
        }
        val = (long)f;
        return LONG2FIX(val);
    }
                
    zero? → true or false click to toggle source

    Returns true if float is 0.0.

     
                   static VALUE
    flo_zero_p(VALUE num)
    {
        if (RFLOAT_VALUE(num) == 0.0) {
            return Qtrue;
        }
        return Qfalse;
    }