Go 1.5 Release Notes - ActiveState ActiveGo 1.8

Go 1.5 Release Notes

Introduction to Go 1.5

The latest Go release, version 1.5, is a significant release, including major architectural changes to the implementation. Despite that, we expect almost all Go programs to continue to compile and run as before, because the release still maintains the Go 1 promise of compatibility.

The biggest developments in the implementation are:

  • The compiler and runtime are now written entirely in Go (with a little assembler). C is no longer involved in the implementation, and so the C compiler that was once necessary for building the distribution is gone.
  • The garbage collector is now concurrent and provides dramatically lower pause times by running, when possible, in parallel with other goroutines.
  • By default, Go programs run with GOMAXPROCS set to the number of cores available; in prior releases it defaulted to 1.
  • Support for internal packages is now provided for all repositories, not just the Go core.
  • The go command now provides experimental support for "vendoring" external dependencies.
  • A new go tool trace command supports fine-grained tracing of program execution.
  • A new go doc command (distinct from godoc) is customized for command-line use.

These and a number of other changes to the implementation and tools are discussed below.

The release also contains one small language change involving map literals.

Finally, the timing of the release strays from the usual six-month interval, both to provide more time to prepare this major release and to shift the schedule thereafter to time the release dates more conveniently.

Changes to the language

Map literals

Due to an oversight, the rule that allowed the element type to be elided from slice literals was not applied to map keys. This has been corrected in Go 1.5. An example will make this clear. As of Go 1.5, this map literal,

m := map[Point]string{
    Point{29.935523, 52.891566}:   "Persepolis",
    Point{-25.352594, 131.034361}: "Uluru",
    Point{37.422455, -122.084306}: "Googleplex",

may be written as follows, without the Point type listed explicitly:

m := map[Point]string{
    {29.935523, 52.891566}:   "Persepolis",
    {-25.352594, 131.034361}: "Uluru",
    {37.422455, -122.084306}: "Googleplex",

The Implementation

No more C

The compiler and runtime are now implemented in Go and assembler, without C. The only C source left in the tree is related to testing or to cgo. There was a C compiler in the tree in 1.4 and earlier. It was used to build the runtime; a custom compiler was necessary in part to guarantee the C code would work with the stack management of goroutines. Since the runtime is in Go now, there is no need for this C compiler and it is gone. Details of the process to eliminate C are discussed elsewhere.

The conversion from C was done with the help of custom tools created for the job. Most important, the compiler was actually moved by automatic translation of the C code into Go. It is in effect the same program in a different language. It is not a new implementation of the compiler so we expect the process will not have introduced new compiler bugs. An overview of this process is available in the slides for this presentation.

Compiler and tools

Independent of but encouraged by the move to Go, the names of the tools have changed. The old names 6g, 8g and so on are gone; instead there is just one binary, accessible as go tool compile, that compiles Go source into binaries suitable for the architecture and operating system specified by $GOARCH and $GOOS. Similarly, there is now one linker (go tool link) and one assembler (go tool asm). The linker was translated automatically from the old C implementation, but the assembler is a new native Go implementation discussed in more detail below.

Similar to the drop of the names 6g, 8g, and so on, the output of the compiler and assembler are now given a plain .o suffix rather than .8, .6, etc.

Garbage collector

The garbage collector has been re-engineered for 1.5 as part of the development outlined in the design document. Expected latencies are much lower than with the collector in prior releases, through a combination of advanced algorithms, better scheduling of the collector, and running more of the collection in parallel with the user program. The "stop the world" phase of the collector will almost always be under 10 milliseconds and usually much less.

For systems that benefit from low latency, such as user-responsive web sites, the drop in expected latency with the new collector may be important.

Details of the new collector were presented in a talk at GopherCon 2015.


In Go 1.5, the order in which goroutines are scheduled has been changed. The properties of the scheduler were never defined by the language, but programs that depend on the scheduling order may be broken by this change. We have seen a few (erroneous) programs affected by this change. If you have programs that implicitly depend on the scheduling order, you will need to update them.

Another potentially breaking change is that the runtime now sets the default number of threads to run simultaneously, defined by GOMAXPROCS, to the number of cores available on the CPU. In prior releases the default was 1. Programs that do not expect to run with multiple cores may break inadvertently. They can be updated by removing the restriction or by setting GOMAXPROCS explicitly. For a more detailed discussion of this change, see the design document.


Now that the Go compiler and runtime are implemented in Go, a Go compiler must be available to compile the distribution from source. Thus, to build the Go core, a working Go distribution must already be in place. (Go programmers who do not work on the core are unaffected by this change.) Any Go 1.4 or later distribution (including gccgo) will serve. For details, see the design document.


Due mostly to the industry's move away from the 32-bit x86 architecture, the set of binary downloads provided is reduced in 1.5. A distribution for the OS X operating system is provided only for the amd64 architecture, not 386. Similarly, the ports for Snow Leopard (Apple OS X 10.6) still work but are no longer released as a download or maintained since Apple no longer maintains that version of the operating system. Also, the dragonfly/386 port is no longer supported at all because DragonflyBSD itself no longer supports the 32-bit 386 architecture.

There are however several new ports available to be built from source. These include darwin/arm and darwin/arm64. The new port linux/arm64 is mostly in place, but cgo is only supported using external linking.

Also available as experiments are ppc64 and ppc64le (64-bit PowerPC, big- and little-endian). Both these ports support cgo but only with internal linking.

On FreeBSD, Go 1.5 requires FreeBSD 8-STABLE+ because of its new use of the SYSCALL instruction.

On NaCl, Go 1.5 requires SDK version pepper-41. Later pepper versions are not compatible due to the removal of the sRPC subsystem from the NaCl runtime.

On Darwin, the use of the system X.509 certificate interface can be disabled with the ios build tag.

The Solaris port now has full support for cgo and the packages net and crypto/x509, as well as a number of other fixes and improvements.



As part of the process to eliminate C from the tree, the compiler and linker were translated from C to Go. It was a genuine (machine assisted) translation, so the new programs are essentially the old programs translated rather than new ones with new bugs. We are confident the translation process has introduced few if any new bugs, and in fact uncovered a number of previously unknown bugs, now fixed.

The assembler is a new program, however; it is described below.


The suites of programs that were the compilers (6g, 8g, etc.), the assemblers (6a, 8a, etc.), and the linkers (6l, 8l, etc.) have each been consolidated into a single tool that is configured by the environment variables GOOS and GOARCH. The old names are gone; the new tools are available through the go tool mechanism as go tool compile, go tool asm, and go tool link. Also, the file suffixes .6, .8, etc. for the intermediate object files are also gone; now they are just plain .o files.

For example, to build and link a program on amd64 for Darwin using the tools directly, rather than through go build, one would run:

$ export GOOS=darwin GOARCH=amd64
$ go tool compile program.go
$ go tool link program.o


Because the go/types package has now moved into the main repository (see below), the vet and cover tools have also been moved. They are no longer maintained in the external golang.org/x/tools repository, although (deprecated) source still resides there for compatibility with old releases.


As described above, the compiler in Go 1.5 is a single Go program, translated from the old C source, that replaces 6g, 8g, and so on. Its target is configured by the environment variables GOOS and GOARCH.

The 1.5 compiler is mostly equivalent to the old, but some internal details have changed. One significant change is that evaluation of constants now uses the math/big package rather than a custom (and less well tested) implementation of high precision arithmetic. We do not expect this to affect the results.

For the amd64 architecture only, the compiler has a new option, -dynlink, that assists dynamic linking by supporting references to Go symbols defined in external shared libraries.


Like the compiler and linker, the assembler in Go 1.5 is a single program that replaces the suite of assemblers (6a, 8a, etc.) and the environment variables GOARCH and GOOS configure the architecture and operating system. Unlike the other programs, the assembler is a wholly new program written in Go.

The new assembler is very nearly compatible with the previous ones, but there are a few changes that may affect some assembler source files. See the updated assembler guide for more specific information about these changes. In summary:

First, the expression evaluation used for constants is a little different. It now uses unsigned 64-bit arithmetic and the precedence of operators (+, -, <<, etc.) comes from Go, not C. We expect these changes to affect very few programs but manual verification may be required.

Perhaps more important is that on machines where SP or PC is only an alias for a numbered register, such as R13 for the stack pointer and R15 for the hardware program counter on ARM, a reference to such a register that does not include a symbol is now illegal. For example, SP and 4(SP) are illegal but sym+4(SP) is fine. On such machines, to refer to the hardware register use its true R name.

One minor change is that some of the old assemblers permitted the notation


to define a named constant. Since this is always possible to do with the traditional C-like #define notation, which is still supported (the assembler includes an implementation of a simplified C preprocessor), the feature was removed.

The linker in Go 1.5 is now one Go program, that replaces 6l, 8l, etc. Its operating system and instruction set are specified by the environment variables GOOS and GOARCH.

There are several other changes. The most significant is the addition of a -buildmode option that expands the style of linking; it now supports situations such as building shared libraries and allowing other languages to call into Go libraries. Some of these were outlined in a design document. For a list of the available build modes and their use, run

$ go help buildmode

Another minor change is that the linker no longer records build time stamps in the header of Windows executables. Also, although this may be fixed, Windows cgo executables are missing some DWARF information.

Finally, the -X flag, which takes two arguments, as in

-X importpath.name value

now also accepts a more common Go flag style with a single argument that is itself a name=value pair:

-X importpath.name=value

Although the old syntax still works, it is recommended that uses of this flag in scripts and the like be updated to the new form.

Go command

The go command's basic operation is unchanged, but there are a number of changes worth noting.

The previous release introduced the idea of a directory internal to a package being unimportable through the go command. In 1.4, it was tested with the introduction of some internal elements in the core repository. As suggested in the design document, that change is now being made available to all repositories. The rules are explained in the design document, but in summary any package in or under a directory named internal may be imported by packages rooted in the same subtree. Existing packages with directory elements named internal may be inadvertently broken by this change, which was why it was advertised in the last release.

Another change in how packages are handled is the experimental addition of support for "vendoring". For details, see the documentation for the go command and the design document.

There have also been several minor changes. Read the documentation for full details.

  • SWIG support has been updated such that .swig and .swigcxx now require SWIG 3.0.6 or later.
  • The install subcommand now removes the binary created by the build subcommand in the source directory, if present, to avoid problems having two binaries present in the tree.
  • The std (standard library) wildcard package name now excludes commands. A new cmd wildcard covers the commands.
  • A new -asmflags build option sets flags to pass to the assembler. However, the -ccflags build option has been dropped; it was specific to the old, now deleted C compiler .
  • A new -buildmode build option sets the build mode, described above.
  • A new -pkgdir build option sets the location of installed package archives, to help isolate custom builds.
  • A new -toolexec build option allows substitution of a different command to invoke the compiler and so on. This acts as a custom replacement for go tool.
  • The test subcommand now has a -count flag to specify how many times to run each test and benchmark. The testing package does the work here, through the -test.count flag.
  • The generate subcommand has a couple of new features. The -run option specifies a regular expression to select which directives to execute; this was proposed but never implemented in 1.4. The executing pattern now has access to two new environment variables: $GOLINE returns the source line number of the directive and $DOLLAR expands to a dollar sign.
  • The get subcommand now has a -insecure flag that must be enabled if fetching from an insecure repository, one that does not encrypt the connection.

Go vet command

The go tool vet command now does more thorough validation of struct tags.

Trace command

A new tool is available for dynamic execution tracing of Go programs. The usage is analogous to how the test coverage tool works. Generation of traces is integrated into go test, and then a separate execution of the tracing tool itself analyzes the results:

$ go test -trace=trace.out path/to/package
$ go tool trace [flags] pkg.test trace.out

The flags enable the output to be displayed in a browser window. For details, run go tool trace -help. There is also a description of the tracing facility in this talk from GopherCon 2015.

Go doc command

A few releases back, the go doc command was deleted as being unnecessary. One could always run "godoc ." instead. The 1.5 release introduces a new go doc command with a more convenient command-line interface than godoc's. It is designed for command-line usage specifically, and provides a more compact and focused presentation of the documentation for a package or its elements, according to the invocation. It also provides case-insensitive matching and support for showing the documentation for unexported symbols. For details run "go help doc".


When parsing #cgo lines, the invocation ${SRCDIR} is now expanded into the path to the source directory. This allows options to be passed to the compiler and linker that involve file paths relative to the source code directory. Without the expansion the paths would be invalid when the current working directory changes.

Solaris now has full cgo support.

On Windows, cgo now uses external linking by default.

When a C struct ends with a zero-sized field, but the struct itself is not zero-sized, Go code can no longer refer to the zero-sized field. Any such references will have to be rewritten.


As always, the changes are so general and varied that precise statements about performance are difficult to make. The changes are even broader ranging than usual in this release, which includes a new garbage collector and a conversion of the runtime to Go. Some programs may run faster, some slower. On average the programs in the Go 1 benchmark suite run a few percent faster in Go 1.5 than they did in Go 1.4, while as mentioned above the garbage collector's pauses are dramatically shorter, and almost always under 10 milliseconds.

Builds in Go 1.5 will be slower by a factor of about two. The automatic translation of the compiler and linker from C to Go resulted in unidiomatic Go code that performs poorly compared to well-written Go. Analysis tools and refactoring helped to improve the code, but much remains to be done. Further profiling and optimization will continue in Go 1.6 and future releases. For more details, see these slides and associated video.

Core library


The flag package's PrintDefaults function, and method on FlagSet, have been modified to create nicer usage messages. The format has been changed to be more human-friendly and in the usage messages a word quoted with `backquotes` is taken to be the name of the flag's operand to display in the usage message. For instance, a flag created with the invocation,

cpuFlag = flag.Int("cpu", 1, "run `N` processes in parallel")

will show the help message,

-cpu N
    	run N processes in parallel (default 1)

Also, the default is now listed only when it is not the zero value for the type.

Floats in math/big

The math/big package has a new, fundamental data type, Float, which implements arbitrary-precision floating-point numbers. A Float value is represented by a boolean sign, a variable-length mantissa, and a 32-bit fixed-size signed exponent. The precision of a Float (the mantissa size in bits) can be specified explicitly or is otherwise determined by the first operation that creates the value. Once created, the size of a Float's mantissa may be modified with the SetPrec method. Floats support the concept of infinities, such as are created by overflow, but values that would lead to the equivalent of IEEE 754 NaNs trigger a panic. Float operations support all IEEE-754 rounding modes. When the precision is set to 24 (53) bits, operations that stay within the range of normalized float32 (float64) values produce the same results as the corresponding IEEE-754 arithmetic on those values.

Go types

The go/types package up to now has been maintained in the golang.org/x repository; as of Go 1.5 it has been relocated to the main repository. The code at the old location is now deprecated. There is also a modest API change in the package, discussed below.

Associated with this move, the go/constant package also moved to the main repository; it was golang.org/x/tools/exact before. The go/importer package also moved to the main repository, as well as some tools described above.


The DNS resolver in the net package has almost always used cgo to access the system interface. A change in Go 1.5 means that on most Unix systems DNS resolution will no longer require cgo, which simplifies execution on those platforms. Now, if the system's networking configuration permits, the native Go resolver will suffice. The important effect of this change is that each DNS resolution occupies a goroutine rather than a thread, so a program with multiple outstanding DNS requests will consume fewer operating system resources.

The decision of how to run the resolver applies at run time, not build time. The netgo build tag that has been used to enforce the use of the Go resolver is no longer necessary, although it still works. A new netcgo build tag forces the use of the cgo resolver at build time. To force cgo resolution at run time set GODEBUG=netdns=cgo in the environment. More debug options are documented here.

This change applies to Unix systems only. Windows, Mac OS X, and Plan 9 systems behave as before.


The reflect package has two new functions: ArrayOf and FuncOf. These functions, analogous to the extant SliceOf function, create new types at runtime to describe arrays and functions.


Several dozen bugs were found in the standard library through randomized testing with the go-fuzz tool. Bugs were fixed in the archive/tar, archive/zip, compress/flate, encoding/gob, fmt, html/template, image/gif, image/jpeg, image/png, and text/template, packages. The fixes harden the implementation against incorrect and malicious inputs.

Minor changes to the library

  • The archive/zip package's Writer type now has a SetOffset method to specify the location within the output stream at which to write the archive.
  • The Reader in the bufio package now has a Discard method to discard data from the input.
  • In the bytes package, the Buffer type now has a Cap method that reports the number of bytes allocated within the buffer. Similarly, in both the bytes and strings packages, the Reader type now has a Size method that reports the original length of the underlying slice or string.
  • Both the bytes and strings packages also now have a LastIndexByte function that locates the rightmost byte with that value in the argument.
  • The crypto package has a new interface, Decrypter, that abstracts the behavior of a private key used in asymmetric decryption.
  • In the crypto/cipher package, the documentation for the Stream interface has been clarified regarding the behavior when the source and destination are different lengths. If the destination is shorter than the source, the method will panic. This is not a change in the implementation, only the documentation.
  • Also in the crypto/cipher package, there is now support for nonce lengths other than 96 bytes in AES's Galois/Counter mode (GCM), which some protocols require.
  • In the crypto/elliptic package, there is now a Name field in the CurveParams struct, and the curves implemented in the package have been given names. These names provide a safer way to select a curve, as opposed to selecting its bit size, for cryptographic systems that are curve-dependent.
  • Also in the crypto/elliptic package, the Unmarshal function now verifies that the point is actually on the curve. (If it is not, the function returns nils). This change guards against certain attacks.
  • The crypto/sha512 package now has support for the two truncated versions of the SHA-512 hash algorithm, SHA-512/224 and SHA-512/256.
  • The crypto/tls package minimum protocol version now defaults to TLS 1.0. The old default, SSLv3, is still available through Config if needed.
  • The crypto/tls package now supports Signed Certificate Timestamps (SCTs) as specified in RFC 6962. The server serves them if they are listed in the Certificate struct, and the client requests them and exposes them, if present, in its ConnectionState struct.
  • The stapled OCSP response to a crypto/tls client connection, previously only available via the OCSPResponse method, is now exposed in the ConnectionState struct.
  • The crypto/tls server implementation will now always call the GetCertificate function in the Config struct to select a certificate for the connection when none is supplied.
  • Finally, the session ticket keys in the crypto/tls package can now be changed while the server is running. This is done through the new SetSessionTicketKeys method of the Config type.
  • In the crypto/x509 package, wildcards are now accepted only in the leftmost label as defined in the specification.
  • Also in the crypto/x509 package, the handling of unknown critical extensions has been changed. They used to cause parse errors but now they are parsed and caused errors only in Verify. The new field UnhandledCriticalExtensions of Certificate records these extensions.
  • The DB type of the database/sql package now has a Stats method to retrieve database statistics.
  • The debug/dwarf package has extensive additions to better support DWARF version 4. See for example the definition of the new type Class.
  • The debug/dwarf package also now supports decoding of DWARF line tables.
  • The debug/elf package now has support for the 64-bit PowerPC architecture.
  • The encoding/base64 package now supports unpadded encodings through two new encoding variables, RawStdEncoding and RawURLEncoding.
  • The encoding/json package now returns an UnmarshalTypeError if a JSON value is not appropriate for the target variable or component to which it is being unmarshaled.
  • The encoding/json's Decoder type has a new method that provides a streaming interface for decoding a JSON document: Token. It also interoperates with the existing functionality of Decode, which will continue a decode operation already started with Decoder.Token.
  • The flag package has a new function, UnquoteUsage, to assist in the creation of usage messages using the new convention described above.
  • In the fmt package, a value of type Value now prints what it holds, rather than use the reflect.Value's Stringer method, which produces things like <int Value>.
  • The EmptyStmt type in the go/ast package now has a boolean Implicit field that records whether the semicolon was implicitly added or was present in the source.
  • For forward compatibility the go/build package reserves GOARCH values for a number of architectures that Go might support one day. This is not a promise that it will. Also, the Package struct now has a PkgTargetRoot field that stores the architecture-dependent root directory in which to install, if known.
  • The (newly migrated) go/types package allows one to control the prefix attached to package-level names using the new Qualifier function type as an argument to several functions. This is an API change for the package, but since it is new to the core, it is not breaking the Go 1 compatibility rules since code that uses the package must explicitly ask for it at its new location. To update, run go fix on your package.
  • In the image package, the Rectangle type now implements the Image interface, so a Rectangle can serve as a mask when drawing.
  • Also in the image package, to assist in the handling of some JPEG images, there is now support for 4:1:1 and 4:1:0 YCbCr subsampling and basic CMYK support, represented by the new image.CMYK struct.
  • The image/color package adds basic CMYK support, through the new CMYK struct, the CMYKModel color model, and the CMYKToRGB function, as needed by some JPEG images.
  • Also in the image/color package, the conversion of a YCbCr value to RGBA has become more precise. Previously, the low 8 bits were just an echo of the high 8 bits; now they contain more accurate information. Because of the echo property of the old code, the operation uint8(r) to extract an 8-bit red value worked, but is incorrect. In Go 1.5, that operation may yield a different value. The correct code is, and always was, to select the high 8 bits: uint8(r>>8). Incidentally, the image/draw package provides better support for such conversions; see this blog post for more information.
  • Finally, as of Go 1.5 the closest match check in Index now honors the alpha channel.
  • The image/gif package includes a couple of generalizations. A multiple-frame GIF file can now have an overall bounds different from all the contained single frames' bounds. Also, the GIF struct now has a Disposal field that specifies the disposal method for each frame.
  • The io package adds a CopyBuffer function that is like Copy but uses a caller-provided buffer, permitting control of allocation and buffer size.
  • The log package has a new LUTC flag that causes time stamps to be printed in the UTC time zone. It also adds a SetOutput method for user-created loggers.
  • In Go 1.4, Max was not detecting all possible NaN bit patterns. This is fixed in Go 1.5, so programs that use math.Max on data including NaNs may behave differently, but now correctly according to the IEEE754 definition of NaNs.
  • The math/big package adds a new Jacobi function for integers and a new ModSqrt method for the Int type.
  • The mime package adds a new WordDecoder type to decode MIME headers containing RFC 204-encoded words. It also provides BEncoding and QEncoding as implementations of the encoding schemes of RFC 2045 and RFC 2047.
  • The mime package also adds an ExtensionsByType function that returns the MIME extensions know to be associated with a given MIME type.
  • There is a new mime/quotedprintable package that implements the quoted-printable encoding defined by RFC 2045.
  • The net package will now Dial hostnames by trying each IP address in order until one succeeds. The Dialer.DualStack mode now implements Happy Eyeballs (RFC 6555) by giving the first address family a 300ms head start; this value can be overridden by the new Dialer.FallbackDelay.
  • A number of inconsistencies in the types returned by errors in the net package have been tidied up. Most now return an OpError value with more information than before. Also, the OpError type now includes a Source field that holds the local network address.
  • The net/http package now has support for setting trailers from a server Handler. For details, see the documentation for ResponseWriter.
  • There is a new method to cancel a net/http Request by setting the new Request.Cancel field. It is supported by http.Transport. The Cancel field's type is compatible with the context.Context.Done return value.
  • Also in the net/http package, there is code to ignore the zero Time value in the ServeContent function. As of Go 1.5, it now also ignores a time value equal to the Unix epoch.
  • The net/http/fcgi package exports two new errors, ErrConnClosed and ErrRequestAborted, to report the corresponding error conditions.
  • The net/http/cgi package had a bug that mishandled the values of the environment variables REMOTE_ADDR and REMOTE_HOST. This has been fixed. Also, starting with Go 1.5 the package sets the REMOTE_PORT variable.
  • The net/mail package adds an AddressParser type that can parse mail addresses.
  • The net/smtp package now has a TLSConnectionState accessor to the Client type that returns the client's TLS state.
  • The os package has a new LookupEnv function that is similar to Getenv but can distinguish between an empty environment variable and a missing one.
  • The os/signal package adds new Ignore and Reset functions.
  • The runtime, runtime/trace, and net/http/pprof packages each have new functions to support the tracing facilities described above: ReadTrace, StartTrace, StopTrace, Start, Stop, and Trace. See the respective documentation for details.
  • The runtime/pprof package by default now includes overall memory statistics in all memory profiles.
  • The strings package has a new Compare function. This is present to provide symmetry with the bytes package but is otherwise unnecessary as strings support comparison natively.
  • The WaitGroup implementation in package sync now diagnoses code that races a call to Add against a return from Wait. If it detects this condition, the implementation panics.
  • In the syscall package, the Linux SysProcAttr struct now has a GidMappingsEnableSetgroups field, made necessary by security changes in Linux 3.19. On all Unix systems, the struct also has new Foreground and Pgid fields to provide more control when exec'ing. On Darwin, there is now a Syscall9 function to support calls with too many arguments.
  • The testing/quick will now generate nil values for pointer types, making it possible to use with recursive data structures. Also, the package now supports generation of array types.
  • In the text/template and html/template packages, integer constants too large to be represented as a Go integer now trigger a parse error. Before, they were silently converted to floating point, losing precision.
  • Also in the text/template and html/template packages, a new Option method allows customization of the behavior of the template during execution. The sole implemented option allows control over how a missing key is handled when indexing a map. The default, which can now be overridden, is as before: to continue with an invalid value.
  • The time package's Time type has a new method AppendFormat, which can be used to avoid allocation when printing a time value.
  • The unicode package and associated support throughout the system has been upgraded from version 7.0 to Unicode 8.0.