You are here: Home > Dive Into Python > HTTP Web Services | << >> | ||||
Dive Into PythonPython from novice to pro |
You've learned about HTML processing and XML processing, and along the way you saw how to download a web page and how to parse XML from a URL, but let's dive into the more general topic of HTTP web services.
Simply stated, HTTP web services are programmatic ways of sending and receiving data from remote servers using the operations of HTTP directly. If you want to get data from the server, use a straight HTTP GET; if you want to send new data to the server, use HTTP POST. (Some more advanced HTTP web service APIs also define ways of modifying existing data and deleting data, using HTTP PUT and HTTP DELETE.) In other words, the “verbs” built into the HTTP protocol (GET, POST, PUT, and DELETE) map directly to application-level operations for receiving, sending, modifying, and deleting data.
The main advantage of this approach is simplicity, and its simplicity has proven popular with a lot of different sites. Data -- usually XML data -- can be built and stored statically, or generated dynamically by a server-side script, and all major languages include an HTTP library for downloading it. Debugging is also easier, because you can load up the web service in any web browser and see the raw data. Modern browsers will even nicely format and pretty-print XML data for you, to allow you to quickly navigate through it.
Examples of pure XML-over-HTTP web services:
- Amazon API allows you to retrieve product information from the Amazon.com online store.
- National Weather Service (United States) and Hong Kong Observatory (Hong Kong) offer weather alerts as a web service.
- Atom API for managing web-based content.
- Syndicated feeds from weblogs and news sites bring you up-to-the-minute news from a variety of sites.
In later chapters, you'll explore APIs which use HTTP as a transport for sending and receiving data, but don't map application semantics to the underlying HTTP semantics. (They tunnel everything over HTTP POST.) But this chapter will concentrate on using HTTP GET to get data from a remote server, and you'll explore several HTTP features you can use to get the maximum benefit out of pure HTTP web services.
Here is a more advanced version of the openanything module that you saw in the previous chapter:
Example 11.1. openanything.py
If you have not already done so, you can download this and other examples used in this book.
import urllib2, urlparse, gzip from StringIO import StringIO USER_AGENT = 'OpenAnything/1.0 +http://diveintopython.org/http_web_services/' class SmartRedirectHandler(urllib2.HTTPRedirectHandler): def http_error_301(self, req, fp, code, msg, headers): result = urllib2.HTTPRedirectHandler.http_error_301( self, req, fp, code, msg, headers) result.status = code return result def http_error_302(self, req, fp, code, msg, headers): result = urllib2.HTTPRedirectHandler.http_error_302( self, req, fp, code, msg, headers) result.status = code return result class DefaultErrorHandler(urllib2.HTTPDefaultErrorHandler): def http_error_default(self, req, fp, code, msg, headers): result = urllib2.HTTPError( req.get_full_url(), code, msg, headers, fp) result.status = code return result def openAnything(source, etag=None, lastmodified=None, agent=USER_AGENT): '''URL, filename, or string --> stream This function lets you define parsers that take any input source (URL, pathname to local or network file, or actual data as a string) and deal with it in a uniform manner. Returned object is guaranteed to have all the basic stdio read methods (read, readline, readlines). Just .close() the object when you're done with it. If the etag argument is supplied, it will be used as the value of an If-None-Match request header. If the lastmodified argument is supplied, it must be a formatted date/time string in GMT (as returned in the Last-Modified header of a previous request). The formatted date/time will be used as the value of an If-Modified-Since request header. If the agent argument is supplied, it will be used as the value of a User-Agent request header. ''' if hasattr(source, 'read'): return source if source == '-': return sys.stdin if urlparse.urlparse(source)[0] == 'http': # open URL with urllib2 request = urllib2.Request(source) request.add_header('User-Agent', agent) if etag: request.add_header('If-None-Match', etag) if lastmodified: request.add_header('If-Modified-Since', lastmodified) request.add_header('Accept-encoding', 'gzip') opener = urllib2.build_opener(SmartRedirectHandler(), DefaultErrorHandler()) return opener.open(request) # try to open with native open function (if source is a filename) try: return open(source) except (IOError, OSError): pass # treat source as string return StringIO(str(source)) def fetch(source, etag=None, last_modified=None, agent=USER_AGENT): '''Fetch data and metadata from a URL, file, stream, or string''' result = {} f = openAnything(source, etag, last_modified, agent) result['data'] = f.read() if hasattr(f, 'headers'): # save ETag, if the server sent one result['etag'] = f.headers.get('ETag') # save Last-Modified header, if the server sent one result['lastmodified'] = f.headers.get('Last-Modified') if f.headers.get('content-encoding', '') == 'gzip': # data came back gzip-compressed, decompress it result['data'] = gzip.GzipFile(fileobj=StringIO(result['data']])).read() if hasattr(f, 'url'): result['url'] = f.url result['status'] = 200 if hasattr(f, 'status'): result['status'] = f.status f.close() return result
Further reading
- Paul Prescod believes that pure HTTP web services are the future of the Internet.
<< Summary |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
How not to fetch data over HTTP >> |