atomic - ActiveState ActiveGo 1.8
...

Package atomic

import "sync/atomic"
Overview
Index
Examples

Overview ▾

Package atomic provides low-level atomic memory primitives useful for implementing synchronization algorithms.

These functions require great care to be used correctly. Except for special, low-level applications, synchronization is better done with channels or the facilities of the sync package. Share memory by communicating; don't communicate by sharing memory.

The swap operation, implemented by the SwapT functions, is the atomic equivalent of:

old = *addr
*addr = new
return old

The compare-and-swap operation, implemented by the CompareAndSwapT functions, is the atomic equivalent of:

if *addr == old {
	*addr = new
	return true
}
return false

The add operation, implemented by the AddT functions, is the atomic equivalent of:

*addr += delta
return *addr

The load and store operations, implemented by the LoadT and StoreT functions, are the atomic equivalents of "return *addr" and "*addr = val".

Index ▾

func AddInt32(addr *int32, delta int32) (new int32)
func AddInt64(addr *int64, delta int64) (new int64)
func AddUint32(addr *uint32, delta uint32) (new uint32)
func AddUint64(addr *uint64, delta uint64) (new uint64)
func AddUintptr(addr *uintptr, delta uintptr) (new uintptr)
func CompareAndSwapInt32(addr *int32, old, new int32) (swapped bool)
func CompareAndSwapInt64(addr *int64, old, new int64) (swapped bool)
func CompareAndSwapPointer(addr *unsafe.Pointer, old, new unsafe.Pointer) (swapped bool)
func CompareAndSwapUint32(addr *uint32, old, new uint32) (swapped bool)
func CompareAndSwapUint64(addr *uint64, old, new uint64) (swapped bool)
func CompareAndSwapUintptr(addr *uintptr, old, new uintptr) (swapped bool)
func LoadInt32(addr *int32) (val int32)
func LoadInt64(addr *int64) (val int64)
func LoadPointer(addr *unsafe.Pointer) (val unsafe.Pointer)
func LoadUint32(addr *uint32) (val uint32)
func LoadUint64(addr *uint64) (val uint64)
func LoadUintptr(addr *uintptr) (val uintptr)
func StoreInt32(addr *int32, val int32)
func StoreInt64(addr *int64, val int64)
func StorePointer(addr *unsafe.Pointer, val unsafe.Pointer)
func StoreUint32(addr *uint32, val uint32)
func StoreUint64(addr *uint64, val uint64)
func StoreUintptr(addr *uintptr, val uintptr)
func SwapInt32(addr *int32, new int32) (old int32)
func SwapInt64(addr *int64, new int64) (old int64)
func SwapPointer(addr *unsafe.Pointer, new unsafe.Pointer) (old unsafe.Pointer)
func SwapUint32(addr *uint32, new uint32) (old uint32)
func SwapUint64(addr *uint64, new uint64) (old uint64)
func SwapUintptr(addr *uintptr, new uintptr) (old uintptr)
type Value
    func (v *Value) Load() (x interface{})
    func (v *Value) Store(x interface{})
Bugs

Package files

doc.go value.go

func AddInt32

func AddInt32(addr *int32, delta int32) (new int32)

AddInt32 atomically adds delta to *addr and returns the new value.

func AddInt64

func AddInt64(addr *int64, delta int64) (new int64)

AddInt64 atomically adds delta to *addr and returns the new value.

func AddUint32

func AddUint32(addr *uint32, delta uint32) (new uint32)

AddUint32 atomically adds delta to *addr and returns the new value. To subtract a signed positive constant value c from x, do AddUint32(&x, ^uint32(c-1)). In particular, to decrement x, do AddUint32(&x, ^uint32(0)).

func AddUint64

func AddUint64(addr *uint64, delta uint64) (new uint64)

AddUint64 atomically adds delta to *addr and returns the new value. To subtract a signed positive constant value c from x, do AddUint64(&x, ^uint64(c-1)). In particular, to decrement x, do AddUint64(&x, ^uint64(0)).

func AddUintptr

func AddUintptr(addr *uintptr, delta uintptr) (new uintptr)

AddUintptr atomically adds delta to *addr and returns the new value.

func CompareAndSwapInt32

func CompareAndSwapInt32(addr *int32, old, new int32) (swapped bool)

CompareAndSwapInt32 executes the compare-and-swap operation for an int32 value.

func CompareAndSwapInt64

func CompareAndSwapInt64(addr *int64, old, new int64) (swapped bool)

CompareAndSwapInt64 executes the compare-and-swap operation for an int64 value.

func CompareAndSwapPointer

func CompareAndSwapPointer(addr *unsafe.Pointer, old, new unsafe.Pointer) (swapped bool)

CompareAndSwapPointer executes the compare-and-swap operation for a unsafe.Pointer value.

func CompareAndSwapUint32

func CompareAndSwapUint32(addr *uint32, old, new uint32) (swapped bool)

CompareAndSwapUint32 executes the compare-and-swap operation for a uint32 value.

func CompareAndSwapUint64

func CompareAndSwapUint64(addr *uint64, old, new uint64) (swapped bool)

CompareAndSwapUint64 executes the compare-and-swap operation for a uint64 value.

func CompareAndSwapUintptr

func CompareAndSwapUintptr(addr *uintptr, old, new uintptr) (swapped bool)

CompareAndSwapUintptr executes the compare-and-swap operation for a uintptr value.

func LoadInt32

func LoadInt32(addr *int32) (val int32)

LoadInt32 atomically loads *addr.

func LoadInt64

func LoadInt64(addr *int64) (val int64)

LoadInt64 atomically loads *addr.

func LoadPointer

func LoadPointer(addr *unsafe.Pointer) (val unsafe.Pointer)

LoadPointer atomically loads *addr.

func LoadUint32

func LoadUint32(addr *uint32) (val uint32)

LoadUint32 atomically loads *addr.

func LoadUint64

func LoadUint64(addr *uint64) (val uint64)

LoadUint64 atomically loads *addr.

func LoadUintptr

func LoadUintptr(addr *uintptr) (val uintptr)

LoadUintptr atomically loads *addr.

func StoreInt32

func StoreInt32(addr *int32, val int32)

StoreInt32 atomically stores val into *addr.

func StoreInt64

func StoreInt64(addr *int64, val int64)

StoreInt64 atomically stores val into *addr.

func StorePointer

func StorePointer(addr *unsafe.Pointer, val unsafe.Pointer)

StorePointer atomically stores val into *addr.

func StoreUint32

func StoreUint32(addr *uint32, val uint32)

StoreUint32 atomically stores val into *addr.

func StoreUint64

func StoreUint64(addr *uint64, val uint64)

StoreUint64 atomically stores val into *addr.

func StoreUintptr

func StoreUintptr(addr *uintptr, val uintptr)

StoreUintptr atomically stores val into *addr.

func SwapInt32

func SwapInt32(addr *int32, new int32) (old int32)

SwapInt32 atomically stores new into *addr and returns the previous *addr value.

func SwapInt64

func SwapInt64(addr *int64, new int64) (old int64)

SwapInt64 atomically stores new into *addr and returns the previous *addr value.

func SwapPointer

func SwapPointer(addr *unsafe.Pointer, new unsafe.Pointer) (old unsafe.Pointer)

SwapPointer atomically stores new into *addr and returns the previous *addr value.

func SwapUint32

func SwapUint32(addr *uint32, new uint32) (old uint32)

SwapUint32 atomically stores new into *addr and returns the previous *addr value.

func SwapUint64

func SwapUint64(addr *uint64, new uint64) (old uint64)

SwapUint64 atomically stores new into *addr and returns the previous *addr value.

func SwapUintptr

func SwapUintptr(addr *uintptr, new uintptr) (old uintptr)

SwapUintptr atomically stores new into *addr and returns the previous *addr value.

type Value

A Value provides an atomic load and store of a consistently typed value. Values can be created as part of other data structures. The zero value for a Value returns nil from Load. Once Store has been called, a Value must not be copied.

A Value must not be copied after first use.

type Value struct {
    // contains filtered or unexported fields
}

Example (Config)

The following example shows how to use Value for periodic program config updates and propagation of the changes to worker goroutines.

Code:

var config Value // holds current server configuration
// Create initial config value and store into config.
config.Store(loadConfig())
go func() {
    // Reload config every 10 seconds
    // and update config value with the new version.
    for {
        time.Sleep(10 * time.Second)
        config.Store(loadConfig())
    }
}()
// Create worker goroutines that handle incoming requests
// using the latest config value.
for i := 0; i < 10; i++ {
    go func() {
        for r := range requests() {
            c := config.Load()
            // Handle request r using config c.
            _, _ = r, c
        }
    }()
}

Example (ReadMostly)

The following example shows how to maintain a scalable frequently read, but infrequently updated data structure using copy-on-write idiom.

Code:

type Map map[string]string
var m Value
m.Store(make(Map))
var mu sync.Mutex // used only by writers
// read function can be used to read the data without further synchronization
read := func(key string) (val string) {
    m1 := m.Load().(Map)
    return m1[key]
}
// insert function can be used to update the data without further synchronization
insert := func(key, val string) {
    mu.Lock() // synchronize with other potential writers
    defer mu.Unlock()
    m1 := m.Load().(Map) // load current value of the data structure
    m2 := make(Map)      // create a new value
    for k, v := range m1 {
        m2[k] = v // copy all data from the current object to the new one
    }
    m2[key] = val // do the update that we need
    m.Store(m2)   // atomically replace the current object with the new one
    // At this point all new readers start working with the new version.
    // The old version will be garbage collected once the existing readers
    // (if any) are done with it.
}
_, _ = read, insert

func (*Value) Load

func (v *Value) Load() (x interface{})

Load returns the value set by the most recent Store. It returns nil if there has been no call to Store for this Value.

func (*Value) Store

func (v *Value) Store(x interface{})

Store sets the value of the Value to x. All calls to Store for a given Value must use values of the same concrete type. Store of an inconsistent type panics, as does Store(nil).

Bugs

  • On x86-32, the 64-bit functions use instructions unavailable before the Pentium MMX.

    On non-Linux ARM, the 64-bit functions use instructions unavailable before the ARMv6k core.

    On both ARM and x86-32, it is the caller's responsibility to arrange for 64-bit alignment of 64-bit words accessed atomically. The first word in a global variable or in an allocated struct or slice can be relied upon to be 64-bit aligned.