# Package rsa

## Overview ▹

## Index ▹

## Constants

const ( // PSSSaltLengthAuto causes the salt in a PSS signature to be as large // as possible when signing, and to be auto-detected when verifying. PSSSaltLengthAuto = 0 // PSSSaltLengthEqualsHash causes the salt length to equal the length // of the hash used in the signature. PSSSaltLengthEqualsHash = -1 )

## Variables

ErrDecryption represents a failure to decrypt a message. It is deliberately vague to avoid adaptive attacks.

var ErrDecryption = errors.New("crypto/rsa: decryption error")

ErrMessageTooLong is returned when attempting to encrypt a message which is too large for the size of the public key.

var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size")

ErrVerification represents a failure to verify a signature. It is deliberately vague to avoid adaptive attacks.

var ErrVerification = errors.New("crypto/rsa: verification error")

## func DecryptOAEP ¶

func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) ([]byte, error)

OAEP is parameterised by a hash function that is used as a random oracle. Encryption and decryption of a given message must use the same hash function and sha256.New() is a reasonable choice.

The random parameter, if not nil, is used to blind the private-key operation and avoid timing side-channel attacks. Blinding is purely internal to this function – the random data need not match that used when encrypting.

The label parameter must match the value given when encrypting. See EncryptOAEP for details.

▹ Example

## func DecryptPKCS1v15 ¶

func DecryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) ([]byte, error)

DecryptPKCS1v15 decrypts a plaintext using RSA and the padding scheme from PKCS#1 v1.5. If rand != nil, it uses RSA blinding to avoid timing side-channel attacks.

Note that whether this function returns an error or not discloses secret information. If an attacker can cause this function to run repeatedly and learn whether each instance returned an error then they can decrypt and forge signatures as if they had the private key. See DecryptPKCS1v15SessionKey for a way of solving this problem.

## func DecryptPKCS1v15SessionKey ¶

func DecryptPKCS1v15SessionKey(rand io.Reader, priv *PrivateKey, ciphertext []byte, key []byte) error

DecryptPKCS1v15SessionKey decrypts a session key using RSA and the padding scheme from PKCS#1 v1.5. If rand != nil, it uses RSA blinding to avoid timing side-channel attacks. It returns an error if the ciphertext is the wrong length or if the ciphertext is greater than the public modulus. Otherwise, no error is returned. If the padding is valid, the resulting plaintext message is copied into key. Otherwise, key is unchanged. These alternatives occur in constant time. It is intended that the user of this function generate a random session key beforehand and continue the protocol with the resulting value. This will remove any possibility that an attacker can learn any information about the plaintext. See “Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption Standard PKCS #1”, Daniel Bleichenbacher, Advances in Cryptology (Crypto '98).

Note that if the session key is too small then it may be possible for an attacker to brute-force it. If they can do that then they can learn whether a random value was used (because it'll be different for the same ciphertext) and thus whether the padding was correct. This defeats the point of this function. Using at least a 16-byte key will protect against this attack.

▹ Example

## func EncryptOAEP ¶

func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) ([]byte, error)

EncryptOAEP encrypts the given message with RSA-OAEP.

OAEP is parameterised by a hash function that is used as a random oracle. Encryption and decryption of a given message must use the same hash function and sha256.New() is a reasonable choice.

The random parameter is used as a source of entropy to ensure that encrypting the same message twice doesn't result in the same ciphertext.

The label parameter may contain arbitrary data that will not be encrypted, but which gives important context to the message. For example, if a given public key is used to decrypt two types of messages then distinct label values could be used to ensure that a ciphertext for one purpose cannot be used for another by an attacker. If not required it can be empty.

The message must be no longer than the length of the public modulus minus twice the hash length, minus a further 2.

▹ Example

## func EncryptPKCS1v15 ¶

func EncryptPKCS1v15(rand io.Reader, pub *PublicKey, msg []byte) ([]byte, error)

EncryptPKCS1v15 encrypts the given message with RSA and the padding scheme from PKCS#1 v1.5. The message must be no longer than the length of the public modulus minus 11 bytes.

The rand parameter is used as a source of entropy to ensure that encrypting the same message twice doesn't result in the same ciphertext.

WARNING: use of this function to encrypt plaintexts other than session keys is dangerous. Use RSA OAEP in new protocols.

## func SignPKCS1v15 ¶

func SignPKCS1v15(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte) ([]byte, error)

SignPKCS1v15 calculates the signature of hashed using RSASSA-PKCS1-V1_5-SIGN from RSA PKCS#1 v1.5. Note that hashed must be the result of hashing the input message using the given hash function. If hash is zero, hashed is signed directly. This isn't advisable except for interoperability.

If rand is not nil then RSA blinding will be used to avoid timing side-channel attacks.

This function is deterministic. Thus, if the set of possible messages is small, an attacker may be able to build a map from messages to signatures and identify the signed messages. As ever, signatures provide authenticity, not confidentiality.

▹ Example

## func SignPSS ¶

func SignPSS(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte, opts *PSSOptions) ([]byte, error)

SignPSS calculates the signature of hashed using RSASSA-PSS [1]. Note that hashed must be the result of hashing the input message using the given hash function. The opts argument may be nil, in which case sensible defaults are used.

## func VerifyPKCS1v15 ¶

func VerifyPKCS1v15(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte) error

VerifyPKCS1v15 verifies an RSA PKCS#1 v1.5 signature. hashed is the result of hashing the input message using the given hash function and sig is the signature. A valid signature is indicated by returning a nil error. If hash is zero then hashed is used directly. This isn't advisable except for interoperability.

▹ Example

## func VerifyPSS ¶

func VerifyPSS(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte, opts *PSSOptions) error

VerifyPSS verifies a PSS signature. hashed is the result of hashing the input message using the given hash function and sig is the signature. A valid signature is indicated by returning a nil error. The opts argument may be nil, in which case sensible defaults are used.

## type CRTValue ¶

CRTValue contains the precomputed Chinese remainder theorem values.

type CRTValue struct { Exp *big.Int // D mod (prime-1). Coeff *big.Int // R·Coeff ≡ 1 mod Prime. R *big.Int // product of primes prior to this (inc p and q). }

## type OAEPOptions ¶

OAEPOptions is an interface for passing options to OAEP decryption using the crypto.Decrypter interface.

type OAEPOptions struct { // Hash is the hash function that will be used when generating the mask. Hash crypto.Hash // Label is an arbitrary byte string that must be equal to the value // used when encrypting. Label []byte }

## type PKCS1v15DecryptOptions ¶

PKCS1v15DecrypterOpts is for passing options to PKCS#1 v1.5 decryption using the crypto.Decrypter interface.

type PKCS1v15DecryptOptions struct { // SessionKeyLen is the length of the session key that is being // decrypted. If not zero, then a padding error during decryption will // cause a random plaintext of this length to be returned rather than // an error. These alternatives happen in constant time. SessionKeyLen int }

## type PSSOptions ¶

PSSOptions contains options for creating and verifying PSS signatures.

type PSSOptions struct { // SaltLength controls the length of the salt used in the PSS // signature. It can either be a number of bytes, or one of the special // PSSSaltLength constants. SaltLength int // Hash, if not zero, overrides the hash function passed to SignPSS. // This is the only way to specify the hash function when using the // crypto.Signer interface. Hash crypto.Hash }

### func (*PSSOptions) HashFunc ¶

func (pssOpts *PSSOptions) HashFunc() crypto.Hash

HashFunc returns pssOpts.Hash so that PSSOptions implements crypto.SignerOpts.

## type PrecomputedValues ¶

type PrecomputedValues struct { Dp, Dq *big.Int // D mod (P-1) (or mod Q-1) Qinv *big.Int // Q^-1 mod P // CRTValues is used for the 3rd and subsequent primes. Due to a // historical accident, the CRT for the first two primes is handled // differently in PKCS#1 and interoperability is sufficiently // important that we mirror this. CRTValues []CRTValue }

## type PrivateKey ¶

A PrivateKey represents an RSA key

type PrivateKey struct { PublicKey // public part. D *big.Int // private exponent Primes []*big.Int // prime factors of N, has >= 2 elements. // Precomputed contains precomputed values that speed up private // operations, if available. Precomputed PrecomputedValues }

### func GenerateKey ¶

func GenerateKey(random io.Reader, bits int) (*PrivateKey, error)

GenerateKey generates an RSA keypair of the given bit size using the random source random (for example, crypto/rand.Reader).

### func GenerateMultiPrimeKey ¶

func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (*PrivateKey, error)

GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit size and the given random source, as suggested in [1]. Although the public keys are compatible (actually, indistinguishable) from the 2-prime case, the private keys are not. Thus it may not be possible to export multi-prime private keys in certain formats or to subsequently import them into other code.

Table 1 in [2] suggests maximum numbers of primes for a given size.

[1] US patent 4405829 (1972, expired) [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf

### func (*PrivateKey) Decrypt ¶

func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error)

Decrypt decrypts ciphertext with priv. If opts is nil or of type *PKCS1v15DecryptOptions then PKCS#1 v1.5 decryption is performed. Otherwise opts must have type *OAEPOptions and OAEP decryption is done.

### func (*PrivateKey) Precompute ¶

func (priv *PrivateKey) Precompute()

Precompute performs some calculations that speed up private key operations in the future.

### func (*PrivateKey) Public ¶

func (priv *PrivateKey) Public() crypto.PublicKey

Public returns the public key corresponding to priv.

### func (*PrivateKey) Sign ¶

func (priv *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error)

Sign signs msg with priv, reading randomness from rand. If opts is a *PSSOptions then the PSS algorithm will be used, otherwise PKCS#1 v1.5 will be used. This method is intended to support keys where the private part is kept in, for example, a hardware module. Common uses should use the Sign* functions in this package.

### func (*PrivateKey) Validate ¶

func (priv *PrivateKey) Validate() error

Validate performs basic sanity checks on the key. It returns nil if the key is valid, or else an error describing a problem.

## type PublicKey ¶

A PublicKey represents the public part of an RSA key.

type PublicKey struct { N *big.Int // modulus E int // public exponent }